• Journal of Inorganic Materials
  • Vol. 38, Issue 1, 79 (2023)
Tao LI1, Pengfei CAO1, Litao HU1, Yong XIA1, Yi CHEN1, Yuejun LIU1, and Aokui SUN1、2、*
Author Affiliations
  • 11. School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
  • 22. School of Metallurgy and Environment, Central South University, Changsha 410083, China
  • show less
    DOI: 10.15541/jim20220242 Cite this Article
    Tao LI, Pengfei CAO, Litao HU, Yong XIA, Yi CHEN, Yuejun LIU, Aokui SUN. NH4+ Assisted Interlayer-expansion of MoS2: Preparation and Its Zinc Storage Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 79 Copy Citation Text show less
    References

    [1] J LIU, S Y ZUO, X J XU et al. Cathodes for aqueous Zn-ion batteries: materials, mechanisms, and kinetics. Chem. Eur. J., 830(2020).

    [2] X WANG, Z C Y ZHANG, B J XI et al. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano, 9244(2021).

    [3] Z X LIU, L P QIN, B G LU et al. Issues and opportunities facing aqueous Mn2+/MnO2 based batteries. ChemSusChem, e202200348(2022).

    [4] Z X LIU, Y Q YANG, S Q LIANG et al. pH-buffer contained electrolyte for self-adjusted cathode-free Zn-MnO2 batteries with coexistence of dual mechanisms. Small Struct., 2100119(2021).

    [5] K ZHANG, P LI, S Y GUO et al. An angstrom-level d-spacing controlling synthetic route for MoS2 towards stable intercalation of sodium ions. J. Mater. Chem. A, 22513(2018).

    [6] B Y ZHANG, L P QIN, Y FANG et al. Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Science Bulletin, 955(2022).

    [7] P LI, J Y JEONG, B J JIN et al. Vertically oriented MoS2 with spatially controlled geometry on nitrogenous graphene sheets for high-performance sodium-ion batteries. Adv. Energy Mater., 1703300(2018).

    [8] P C RUAN, S Q LIANG, B G LU et al. Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed., e202(2022).

    [9] W S V LEE, T XIONG, X P WANG et al. Unraveling MoS2 and transition metal dichalcogenides as functional zinc-ion battery cathode: a perspective. Small Methods, 2000(2020).

    [10] J XIE, H ZHANG, Q LIU et al. Recent progress of molybdenum-based materials in aqueous rechargeable batteries. Mater. Today Adv., 100100(2020).

    [11] T LI, H X LI, J C YUAN et al. Recent advance and modification strategies of transition metal dichalcogenides (TMDs) in aqueous zinc ion batteries. Mater., 2654(2022).

    [12] W B LIU, J W HAO, C J XU et al. Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion batteries system. Chem. Commun., 6872(2017).

    [13] S W LI, Y C LIU, X D ZHAO et al. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater., 2007480(2021).

    [14] M H HUANG, Y J MAI, L J ZHAO et al. Hierarchical MoS2@CNTs hybrid as a long-life and high-rate cathode for aqueous rechargeable Zn-ion batteries. ChemElectroChem, 4218(2020).

    [15] Z C ZHANG, W LI, R X WANG et al. Crystal water assisting MoS2 nanoflowers for reversible zinc storage. J. Alloys. Compd., 159599(2021).

    [16] J P LIU, P T XU, J M LIANG et al. Boosting aqueous zinc-ion storage in MoS2via controllable phase. Chem. Eng. J., 124405(2020).

    [17] M H HUANG, Y J MAI, G W FAN et al. Toward fast zinc-ion storage of MoS2 by tunable pseudocapacitance. J. Alloys Compd., 159541(2021).

    [18] J P LIU, N GONG, W C PENG et al. Vertically aligned 1T phase MoS2 nanosheet array for high-performance rechargeable aqueous Zn-ion batteries. Chem. Eng. J., 130981(2022).

    [19] C Y CAI, Z R TAO, Y F ZHU et al. A nano interlayer spacing and rich defect 1T-MoS2 as cathode for superior performance aqueous zinc-ion batteries. Nanoscale Adv., 3780(2021).

    [20] H F LIANG, Z CAO, F W MING et al. Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett., 3199(2019).

    [21] W W XU, C L SUN, K N ZHAO et al. Defect engineering activating (Boosting) zinc storage capacity of MoS2. Energy Storage Mater., 527(2019).

    [22] H JIA, M H QIU, B TAWIAH et al. Interlayer-expanded MoS2 hybrid nanospheres with superior zinc storage behavior. Compos. Commun., 100841(2021).

    [23] P F CAO, N CHEN, W J TANG et al. Template-assisted hydrothermal synthesized hydrophilic spherical 1T-MoS2 with excellent zinc storage performance. J. Alloys. Compd., 162854(2022).

    [24] H Y LIU, J G WANG, W HUA et al. Boosting zinc-ion intercalation in hydrated MoS2 nanosheets toward substantially improved performance. Energy Storage Mater., 731(2021).

    [25] H F LI, Q YANG, F N MO et al. MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries. Energy Storage Mater., 94(2019).

    [26] M H HUANG, Y J MAI, L J ZHAO et al. Tuning the kinetics of zinc ion in MoS2 by polyaniline intercalation. Electrochim. Acta., 138624(2021).

    [27] D Z WANG, X Y ZHANG, S Y BAO et al. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A, 2681(2017).

    [28] D Z WANG, Y Y XIAO, X N LUO et al. Swollen ammoniated MoS2 with 1T/2H hybrid phases for high-rate electrochemical energy storage. ACS Sustainable Chem. Eng., 2509(2017).

    [29] Z Z WU, K YU, L XIE et al. Dual-ion intercalated 1T/2H MoS2 with expanded interlayers as supercapacitor electrode materials. Mater. Res. Express, 085534(2019).

    [30] X M GENG, W W SUN, W WU et al. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun., 10672(2016).

    [31] J ZHENG, H ZHANG, S H DONG et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun., 2995(2014).

    [32] Y C LIN, D O DUMCENCO, Y S HUANG et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol., 391(2014).

    [33] S VENKATESHWARAN, M J JOSLINE, K S M SENTHIL. Fine-tuning interlayer spacing in MoS2 for enriching 1T phase via alkylated ammonium ions for electrocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy, 8377(2021).

    [34] J F XIE, H ZHANG, S LI et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater., 5807(2013).

    [35] K CHANG, X HAI, H PANG et al. Targeted synthesis of 2H-and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater., 10033(2016).

    [37] D L CHAO, P LIANG, Z CHEN et al. Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano, 10211(2016).

    [38] H S KIM, J B COOK, H LIN et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater., 454(2017).

    [39] Z Z CHE, Y F LI, K X CHEN et al. Hierarchical MoS2@RGO nanosheets for high performance sodium storage. J. Power Sources, 50(2016).

    [40] S MAJUMDER, M H SHAO, Y F DENG et al. Ultrathin sheets of MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium-sulfur batteries. J. Power Sources, 93(2019).

    [41] J J WANG, J G WANG, H Y LIU et al. Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries. J. Power Sources, 226951(2019).

    [42] L L CHEN, Z H YANG, H G QIN et al. Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc ion battery. J. Power Sources, 162(2019).

    Tao LI, Pengfei CAO, Litao HU, Yong XIA, Yi CHEN, Yuejun LIU, Aokui SUN. NH4+ Assisted Interlayer-expansion of MoS2: Preparation and Its Zinc Storage Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 79
    Download Citation