• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823004 (2021)
Che Liu1、2, Qian Ma1、2, Lianlin Li3, and Tiejun Cui1、2、*
Author Affiliations
  • 1Institute of Electromagnetic Space, Southeast University, Nanjing, Jiangsu 210096, China
  • 2State Key Laboratory of Millimeter Wave, Southeast University, Nanjing, Jiangsu 210096, China
  • 3State Key Laboratory of Advanced Optical Communication Systems and Networks, Peking University, Beijing 100871, China
  • show less
    DOI: 10.3788/AOS202141.0823004 Cite this Article Set citation alerts
    Che Liu, Qian Ma, Lianlin Li, Tiejun Cui. Artificial Intelligence Metamaterials[J]. Acta Optica Sinica, 2021, 41(8): 0823004 Copy Citation Text show less
    References

    [1] Silver D, Schrittwieser J, Simonyan K et al. Mastering the game of Go without human knowledge[J]. Nature, 550, 354-359(2017). http://www.ncbi.nlm.nih.gov/pubmed/29052630

    [2] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [3] Hinton G, Deng L, Yu D et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 29, 82-97(2012). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6296526

    [4] Pironkov G, Wood S U, Dupont S. Hybrid-task learning for robust automatic speech recognition[J]. Computer Speech & Language, 64, 101103(2020). http://www.sciencedirect.com/science/article/pii/S088523082030036X

    [5] Graves A, Mohamed A R, Hinton G. Speech recognition with deep recurrent neural networks. [C]∥2013 IEEE International Conference on Acoustics, Speech and Signal Processing, May 26-31, 2013, Vancouver, Canada. New York: IEEE, 6645-6649(2013).

    [6] Kong L. Intelligent recognition system for high precision image significant features in large data background[M]. ∥Advances in Intelligent Systems and Computing. Cham: Springer, 1056-1062(2019).

    [7] Tong T, Mu X, Zhang L et al. MBVCNN: joint convolutional neural networks method for image recognition. [C]∥ Materials Science, Energy Technology, and Power Engineering I, April 15-16, 2017, Hangzhou, China. New York: American Institute of Physics, 1839, 020091(2017).

    [8] Sun H, Zhang Q, Wang H et al. Research of images recognition method based on rbf neural network. [C]∥ 2012 7th International Conference on System of Systems Engineering, July 16-19, 2012, Genoa, Italy. New York: IEEE, 24-26(2012).

    [9] Cho K, Merrienboer B V, Gulcehre C et al. -09-03)[2020-06-01]. http:∥emnlp2014.org/papers/pdf/EMNLP2014179.pdf.(2014).

    [10] Escolano C. Costa-Jussà M R, Fonollosa J A R. From bilingual to multilingual neural-based machine translation by incremental training[J]. Journal of the Association for Information Science and Technology, 1-14(2020).

    [11] Kwon S, Go B H, Lee J H. A text-based visual context modulation neural model for multimodal machine translation[J]. Pattern Recognition Letters, 136, 212-218(2020). http://www.sciencedirect.com/science/article/pii/S0167865520302282

    [12] Goodfellow I J, Pouget-Abadie J, Mirza M et al. -12-03)[2020-06-01]. https:∥papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.(2014).

    [13] Ledig C, Theis L, Huszar F et al. -05-25)[2020-06-01]. https:∥arxiv., org/abs/1609, 04802(2017).

    [14] Choi Y, Choi M, Kim M et al. StarGAN: unified generative adversarial networks for mlti-domain image-to-image translation. [C]∥2018 IEEE/Cvf Conference on Computer Vision and Pattern Recognition, July 18-23, 2018, Salt Lake City, America. New York: IEEE, 8789-8797(2018).

    [15] Xiao J, Bi X J. Multi-scale attention generative adversarial networks for video frame interpolation[J]. IEEE Access, 8, 94842-94851(2020). http://ieeexplore.ieee.org/document/9097443

    [16] He C Y, Wan Y, Gu Y X et al. Integral reinforcement learning-based multi-robot minimum time-energy path planning subject to collision avoidance and unknown environmental disturbances[J]. IEEE Control Systems Letters, 5, 983-988(2020). http://www.researchgate.net/publication/342757855_Integral_Reinforcement_Learning-based_Multi-Robot_Minimum_Time-Energy_Path_Planning_Subject_to_Collision_Avoidance_And_Unknown_Environmental_Disturbances

    [17] Sangiovanni B, Incremona G P, Piastra M et al. Self-configuring robot path planning with obstacle avoidance via deep reinforcement learning[J]. IEEE Control Systems Letters, 5, 397-402(2021). http://ieeexplore.ieee.org/document/9119090

    [18] Yoo J, Jang D, Kim H J et al. Hybrid reinforcement learning control for a micro quadrotor flight[J]. IEEE Control Systems Letters, 5, 505-510(2021). http://ieeexplore.ieee.org/document/9114884

    [19] Acernese A, Yerudkar A, Glielmo L et al. Reinforcement learning approach to feedback stabilization problem of probabilistic Boolean control networks[J]. IEEE Control Systems Letters, 5, 337-342(2020). http://www.researchgate.net/publication/342135052_Reinforcement_Learning_Approach_to_Feedback_Stabilization_Problem_of_Probabilistic_Boolean_Control_Networks

    [20] Zhao H, Zhao J H, Qiu J et al. Cooperative wind farm control with deep reinforcement learning and knowledge-assisted learning[J]. IEEE Transactions on Industrial Informatics, 16, 6912-6921(2020). http://ieeexplore.ieee.org/document/8999726

    [21] Veselago V G. The electrodynamics of substances with simultaneously negative values of ∈ and μ[J]. Soviet Physics Uspekhi, 10, 509-514(1968). http://adsabs.harvard.edu/abs/1968SvPhU..10..509V

    [22] Parazzoli C G, Greegor R B, Li K et al. Experimental verification and simulation of negative index of refraction using Snell's law[J]. Physical Review Letters, 90, 107401(2003). http://europepmc.org/abstract/MED/12689029

    [23] Drachev V P, Cai W, Chettiar U et al. Experimental verification of an optical negative-index material[J]. Laser Physics Letters, 3, 49-55(2006). http://onlinelibrary.wiley.com/doi/10.1002/lapl.200510062/citedby

    [24] Maystre D R, Enoch S, Tayeb G. Ultrarefraction and negative refraction in metamaterials[J]. Proceedings of SPIE, 5359, 64-75(2004).

    [25] Chen X, Luo Y, Zhang J et al. Macroscopic invisibility cloaking of visible light[J]. Nature Communications, 2, 176(2011). http://www.ncbi.nlm.nih.gov/pubmed/21405275

    [26] Zhang B, Luo Y, Liu X et al. Macroscopic invisibility cloak for visible light[J]. Physical Review Letters, 106, 033901(2011). http://www.ncbi.nlm.nih.gov/pubmed/21405275

    [27] Cheng Q, Jiang W X, Cui T J. Spatial power combination for omnidirectional radiation via anisotropic metamaterials[J]. Physical Review Letters, 108, 213903(2012). http://europepmc.org/abstract/MED/23003254

    [28] Zhou H, Pei Z, Qu S et al. A planar zero-index metamaterial for directive emission[J]. Journal of Electromagnetic Waves and Applications, 23, 953-962(2009). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6833995

    [29] Zhou L, Li H Q, Qin Y Q et al. Directive emissions from subwavelength metamaterial-based cavities[J]. Applied Physics Letters, 86, 101101(2005).

    [30] Silveirinha M, Engheta N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials[J]. Physical Review Letters, 97, 157403(2006). http://prl.aps.org/abstract/PRL/v97/i15/e157403

    [31] Liu R, Cheng Q, Hand T et al. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies[J]. Physical Review Letters, 100, 023903(2008). http://labs.europepmc.org/abstract/MED/18232869

    [32] Ni X, Emani N K, Kildishev A V et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 335, 427(2012).

    [33] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [34] Sun S, He Q, Xiao S et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [35] Yin X, Ye Z, Rho J et al. Photonic spin Hall effect at metasurfaces[J]. Science, 339, 1405-1407(2013).

    [36] Lin J. Mueller J P B, Wang Q, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 340, 331-334(2013).

    [37] Miroshnichenko A E, Kivshar Y S. Polarization traffic control for surface plasmons[J]. Science, 340, 283-284(2013).

    [38] Grady N K, Heyes J E, Chowdhury D R et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 340, 1304-1307(2013). http://europepmc.org/abstract/MED/23686344

    [39] Qu C, Ma S, Hao J et al. Tailor the functionalities of metasurfaces based on a complete phase diagram[J]. Physical Review Letters, 115, 235503(2015).

    [40] Pendry J B. Controlling electromagnetic fields[J]. Science, 312, 1780-1782(2006).

    [41] Schurig D, Mock J J, Justice B J et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006).

    [42] Leonhardt U. Optical conformal mapping[J]. Science, 312, 1777-1780(2006).

    [43] Li J, Pendry J B. Hiding under the carpet: A new strategy for cloaking[J]. Physical Review Letters, 101, 203901(2008). http://www.ncbi.nlm.nih.gov/pubmed/19113341

    [44] Liu R, Ji C, Mock J J et al. Broadband ground-plane cloak[J]. Science, 323, 366-369(2009).

    [45] Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nature Communications, 1, 21(2010). http://pubmedcentralcanada.ca/pmcc/articles/PMC2982161/

    [46] Shin D, Urzhumov Y, Jung Y et al. Broadband electromagnetic cloaking with smart metamaterials[J]. Nature Communications, 3, 1213(2012). http://www.nature.com/articles/ncomms2219/

    [47] Ergin T, Stenger N, Brenner P et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 328, 337-339(2010).

    [48] Jiang W X, Cui T J, Cheng Q et al. Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces[J]. Applied Physics Letters, 92, 264101(2008). http://scitation.aip.org/content/aip/journal/apl/92/26/10.1063/1.2951485

    [49] Lai Y, Ng J, Chen H et al. Illusion optics: the optical transformation of an object into another object[J]. Physical Review Letters, 102, 253902(2009). http://europepmc.org/abstract/MED/19659076

    [50] Jiang W X, Cui T J, Yang X M et al. Shrinking an arbitrary object as one desires using metamaterials[J]. Applied Physics Letters, 98, 204101(2011). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5771006

    [51] Kundtz N, Smith D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 9, 129-132(2010).

    [52] Jiang W X, Qiu C-W, Han T C et al. Broadband all-dielectric magnifying lens for far-field high-resolution imaging[J]. Advanced Materials, 25, 6963-6968(2013). http://europepmc.org/abstract/med/24352983

    [53] Yang X M, Zhou X Y, Cheng Q et al. Diffuse reflections by randomly gradient index metamaterials[J]. Optics Letters, 35, 808-810(2010). http://europepmc.org/abstract/MED/20237606

    [54] Ning Z L, Li Y, Dong P R et al. When deep reinforcement learning meets 5G-enabled vehicular networks: a distributed offloading framework for traffic big data[J]. IEEE Transactions on Industrial Informatics, 16, 1352-1361(2020). http://www.researchgate.net/publication/335355467_When_Deep_Reinforcement_Learning_Meets_5G_Vehicular_Networks_A_Distributed_Offloading_Framework_for_Traffic_Big_Data

    [55] Wan S H, Li X, Xue Y et al. Efficient computation offloading for Internet of Vehicles in edge computing-assisted 5G networks[J]. The Journal of Supercomputing, 76, 2518-2547(2020). http://link.springer.com/article/10.1007/s11227-019-03011-4

    [56] Huang H J, Guo S, Gui G et al. Deep learning for physical-layer 5G wireless techniques: opportunities, challenges and solutions[J]. IEEE Wireless Communications, 27, 214-222(2020). http://arxiv.org/abs/1904.09673

    [57] Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 3, e218(2014). http://www.nature.com/articles/lsa201499/

    [58] Cui T J, Li L L, Liu S et al. Information metamaterial systems[J]. iScience, 23, 101403(2020).

    [59] Cui T J, Liu S, Zhang L. Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 5, 3644-3668(2017). http://pubs.rsc.org/en/content/articlelanding/2017/tc/c7tc00548b/unauth

    [60] Li L L, Cui T J. Information metamaterials-from effective media to real-time information processing systems[J]. Nanophotonics, 8, 703-724(2019). http://www.degruyter.com/view/j/nanoph.2019.8.issue-5/nanoph-2019-0006/nanoph-2019-0006.xml

    [61] Cui T J, Liu S, Li L L. Information entropy of coding metasurface[J]. Light, Science & Applications, 5, e16172(2016).

    [62] Li J, Zhang Y T, Li J N et al. Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurfaces[J]. Nanoscale, 11, 5746-5753(2019). http://www.ncbi.nlm.nih.gov/pubmed/30865757

    [63] Bao L, Ma Q, Bai G D et al. Design of digital coding metasurfaces with independent controls of phase and amplitude responses[J]. Applied Physics Letters, 113, 063502(2018). http://www.researchgate.net/publication/326909513_Design_of_digital_coding_metasurfaces_with_independent_controls_of_phase_and_amplitude_responses

    [64] Wu R Y, Zhang L, Bao L et al. Digital metasurface with phase code and reflection-transmission amplitude code for flexible full-space electromagnetic manipulations[J]. Advanced Optical Materials, 7, 1801429(2019). http://onlinelibrary.wiley.com/doi/pdf/10.1002/adom.201801429

    [65] Ma Q, Shi C B, Bai G D et al. Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit[J]. Advanced Optical Materials, 5, 1700548(2017).

    [66] Sui S, Ma H, Wang J F et al. Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces[J]. Applied Physics Letters, 109, 014104(2016). http://scitation.aip.org/content/aip/journal/apl/109/1/10.1063/1.4955412

    [67] Iqbal S, Liu S, Wu R Y et al. Polarization-selective dual-band digital coding metasurface for controls of transmitted waves[J]. Journal of Physics D: Applied Physics, 51, 285103(2018). http://iopscience.iop.org/article/10.1088/1361-6463/aacad5

    [68] Ding G W, Chen K, Luo X Y et al. Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion[J]. Physical Review Applied, 11, 044043(2019). http://www.researchgate.net/publication/332432039_Dual-Helicity_Decoupled_Coding_Metasurface_for_Independent_Spin-to-Orbital_Angular_Momentum_Conversion

    [69] Han J Q, Li L, Yi H et al. 1-bit digital orbital angular momentum vortex beam generator based on a coding reflective metasurface[J]. Optical Materials Express, 8, 3470-3478(2018). http://www.osapublishing.org/ome/abstract.cfm?uri=ome-8-11-3470

    [70] Zheng Q Q, Li Y F, Han Y J et al. Efficient orbital angular momentum vortex beam generation by generalized coding metasurface[J]. Applied Physics A, 125, 1-5(2019). http://link.springer.com/article/10.1007/s00339-018-2373-z

    [71] Zhang L, Chen X Q, Liu S et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 9, 4334(2018). http://www.nature.com/articles/s41467-018-06802-0/

    [72] Cui T J, Liu S, Bai G D et al. Direct transmission of digital message via programmable coding metasurface[J]. Research, 2019, 2584509(2019). http://www.ncbi.nlm.nih.gov/pubmed/31549052

    [73] Zhao J, Yang X, Dai J Y et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 6, 231-238(2019).

    [74] Shuang Y, Zhao H T, Ji W et al. Programmable high-order OAM-carrying beams for direct-modulation wireless communications[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 10, 29-37(2020). http://ieeexplore.ieee.org/document/8995583

    [75] Zhao H T, Shuang Y, Wei M L et al. Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals[J]. Nature Communications, 11, 1-10(2020). http://www.nature.com/articles/s41467-020-17808-y

    [76] Li L, Cui T J, Ji W et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 8, 197(2017). http://www.ncbi.nlm.nih.gov/pubmed/28775295

    [77] Li L, Ruan H, Liu C et al. Machine-learning reprogrammable metasurface imager[J]. Nature Communications, 10, 1082(2019). http://www.nature.com/articles/s41467-019-09103-2

    [78] Zhang Q, Wan X, Liu S et al. Shaping electromagnetic waves using software-automatically-designed metasurfaces[J]. Scientific Reports, 7, 3588(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5472564/

    [79] Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm. [C]∥1997 IEEE International Conference on Systems, Man, and Cybernetics, October 12-15, 1997, Orlando, America. New York: IEEE, 4104-4108(1997).

    [80] Mirjalili S, Lewis A. S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization[J]. Swarm and Evolutionary Computation, 9, 1-14(2013). http://www.sciencedirect.com/science/article/pii/S2210650212000648

    [81] Yin P Y. A discrete particle swarm algorithm for optimal polygonal approximation of digital curves[J]. Journal of Visual Communication and Image Representation, 15, 241-260(2004). http://www.sciencedirect.com/science/article/pii/S1047320303000981

    [82] Zhang Q, Liu C, Wan X et al. Machine-learning designs of anisotropic digital coding metasurfaces[J]. Advanced Theory and Simulations, 2, 1800132(2019). http://onlinelibrary.wiley.com/doi/10.1002/adts.201800132

    [83] He K, Zhang X, Ren S et al. Deep residual learning for image recognition. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016, Seattle, America. New York: IEEE, 770-778(2016).

    [84] Qiu T S, Shi X, Wang J F et al. Deep learning: a rapid and efficient route to automatic metasurface design[J]. Advanced Science, 6, 1900128(2019). http://onlinelibrary.wiley.com/doi/pdf/10.1002/advs.201900128

    [85] Liu D J, Tan Y X, Khoram E et al. Training deep neural networks for the inverse design of nanophotonic structures[J]. ACS Photonics, 5, 1365-1369(2018).

    [86] Liu Z C, Zhu D Y, Rodrigues S P et al. Generative model for the inverse design of metasurfaces[J]. Nano Letters, 18, 6570-6576(2018).

    [87] Inampudi S, Mosallaei H. Neural network based design of metagratings[J]. Applied Physics Letters, 112, 241102(2018).

    [88] Waltz R A, Morales J L, Nocedal J et al. An interior algorithm for nonlinear optimization that combines line search and trust region steps[J]. Mathematical Programming, 107, 391-408(2006). http://dl.acm.org/doi/10.5555/3113624.3114147

    [89] Ma W, Cheng F, Xu Y H et al. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy[J]. Advanced Materials, 31, 1901111(2019). http://onlinelibrary.wiley.com/doi/10.1002/adma.201901111

    [90] Lin X, Rivenson Y, Yardimci N T et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 361, 1004-1008(2018). http://arxiv.org/abs/1804.08711

    [91] Hwang C Y, Kim G H, Yang J H et al. Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials[J]. Nanoscale, 10, 21648-21655(2018).

    [92] Khoram E, Chen A, Liu D J et al. Nanophotonic media for artificial neural inference[J]. Photonics Research, 7, 823-827(2019).

    [93] Kulkarni K, Turaga P. Reconstruction-free action inference from compressive imagers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 772-784(2016).

    [94] Larouche S, Tsai Y J, Tyler T et al. Infrared metamaterial phase holograms[J]. Nature Materials, 11, 450-454(2012).

    [95] Li L L, Shuang Y, Ma Q et al. Intelligent metasurface imager and recognizer[J]. Light: Science & Applications, 8, 97(2019). http://www.nature.com/articles/s41377-019-0209-z

    [96] Li H Y, Zhao H T, Wei M L et al. Intelligent electromagnetic sensing with learnable data acquisition and processing[J]. Patterns, 1, 100006(2020). http://www.sciencedirect.com/science/article/pii/S2666389920300064

    [97] Ma Q, Bai G D, Jing H B et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light: Science & Applications, 8, 98(2019). http://www.ncbi.nlm.nih.gov/pubmed/31700618

    Che Liu, Qian Ma, Lianlin Li, Tiejun Cui. Artificial Intelligence Metamaterials[J]. Acta Optica Sinica, 2021, 41(8): 0823004
    Download Citation