• Photonics Research
  • Vol. 13, Issue 5, 1428 (2025)
Pamela Stoeva1,2, Tatsiana Mikulchyk2,3, Suzanne Martin1,2, Maria Antonietta Ferrara3..., Giuseppe Coppola3 and Izabela Naydenova1,2,*|Show fewer author(s)
Author Affiliations
  • 1Centre for Industrial and Engineering Optics, School of Physics, Clinical and Optometric Sciences, Technological University Dublin, D07 ADY7 Dublin, Ireland
  • 2FOCAS Research Institute, Technological University Dublin, D08 CKP1 Dublin, Ireland
  • 3Institute of Applied Sciences and Intelligent Systems (ISASI-NA), 80131 Naples, Italy
  • show less
    DOI: 10.1364/PRJ.549314 Cite this Article Set citation alerts
    Pamela Stoeva, Tatsiana Mikulchyk, Suzanne Martin, Maria Antonietta Ferrara, Giuseppe Coppola, Izabela Naydenova, "Holographic multi-waveguide system: towards implementation in wearable sensor technologies," Photonics Res. 13, 1428 (2025) Copy Citation Text show less
    References

    [1] J. T. Sheridan, R. K. Kostuk, A. F. Gil. Roadmap on holography. J. Opt., 22, 123002(2020).

    [2] C. Jang, O. Mercier, K. Bang. Design and fabrication of freeform holographic optical elements. ACM Trans. Graph., 39, 184(2020).

    [3] Y. Ding, Q. Yang, Y. Li. Waveguide-based augmented reality displays: perspectives and challenges. eLight, 3, 24(2023).

    [4] S. Wang, K. Du, N. Song. Study on the adaptability of augmented reality smartglasses for astigmatism based on holographic waveguide grating. Virtual Real. Intell. Hardware, 2, 79-85(2020).

    [5] J.-H. Park, B. Lee. Holographic techniques for augmented reality and virtual reality near-eye displays. Light Adv. Manuf., 3, 137-150(2022).

    [6] P. Sparwasser, M. Haack, L. Frey. Assessment of a novel smartglass-based point-of-care fusion approach for mixed reality-assisted targeted prostate biopsy: a pilot proof-of-concept study. Front Surg, 9, 892170(2022).

    [7] https://www.uploadvr.com/waveguides-smartglasses/. https://www.uploadvr.com/waveguides-smartglasses/

    [8] A. M. Ramachandran, S. M. Singh, A. S. Thampi. A comprehensive review on optics and optical materials for planar waveguide-based compact concentrated solar photovoltaics. Results Eng., 16, 100665(2022).

    [9] C. F. Guimarães, R. Ahmed, A. P. Marques. Engineering hydrogel-based biomedical photonics: design, fabrication, and applications. Adv. Mater., 33, 2006582(2021).

    [10] S. Davies, Y. Hu, N. Jiang. Holographic sensors in biotechnology. Adv. Funct. Mater., 31, 2105645(2021).

    [11] M. Shishova, A. Zherdev, S. Odinokov. Selective couplers based on multiplexed volume holographic gratings for waveguide displays. Photonics, 8, 232(2021).

    [12] X. Chen, N. Tagami, H. Konno. Computational see-through screen camera based on a holographic waveguide device. Opt. Express, 30, 25006-25019(2022).

    [13] D. Chakraborty, R. Georgiev, S. Aspell. Modelling and design of holographic optical elements for beam-coupling applications for a range of incident beam angles. Photonics, 9, 936(2022).

    [14] C. Neipp, S. I. Taleb, J. Francés. Analysis of the imaging characteristics of holographic waveguides recorded in photopolymers. Polymers, 12, 1485(2020).

    [15] P. Stoeva, T. Mikulchyk, B. Rogers. Development of holographic optical elements for use in wound monitoring. Proc. SPIE, 12574, 1257406(2023).

    [16] R. Fernández, S. Bleda, S. Gallego. Holographic waveguides in photopolymers. Opt. Express, 27, 827-840(2019).

    [17] D. Chakraborty, R. Georgiev, V. Toal. Comparison of holographic recording options for reflection-format and transmission-format coupler-type diffractive optical elements: theoretical exploration and experimental validation. Opt. Express, 32, 20385-20400(2024).

    [18] J. J. Sirvent-Verdú, J. C. Bravo, J. Colomina-Martínez. Manufacturing reflection holographic couplers for see-through applications recorded in photopolymers without prisms: an experimental validation. EPJ Web Conf., 287, 09046(2023).

    [19] M. Pirzada, Z. Altintas. Recent progress in optical sensors for biomedical diagnostics. Micromachines, 11, 356(2020).

    [20] Y.-H. Shin, M. T. Gutierrez-Wing, J.-W. Choi. Review—recent progress in portable fluorescence sensors. J. Electrochem. Soc., 168, 017502(2021).

    [21] P. Stoeva, T. Mikulchyk, I. Naydenova. Holographic multiplexing in a photopolymerisable hybrid sol-gel. Optics Contin., 3, 871-878(2024).

    [22] K. M. Raj, S. Chakraborty. PDMS microfluidics: a mini review. J. Appl. Polym. Sci., 137, 48958(2020).

    [23] S. Torino, B. Corrado, M. Iodice. PDMS-based microfluidic devices for cell culture. Inventions, 3, 65(2018).

    [24] D. Zhao, S. Yu, W.-J. Jiang. Recent progress in metal-organic framework based fluorescent sensors for hazardous materials detection. Molecules, 27, 2226(2022).

    [25] A. J. Syed, J. C. Anderson. Applications of bioluminescence in biotechnology and beyond. Chem. Soc. Rev., 50, 5668-5705(2021).

    [26] Q. Huang, P. R. Ashley. Holographic Bragg grating input–output couplers for polymer waveguides at an 850-nm wavelength. Appl. Opt., 36, 1198-1203(1997).

    [27] C. Neipp, J. Francés, F. J. Martínez. Optimization of photopolymer materials for the fabrication of a holographic waveguide. Polymers, 9, 395(2017).

    [28] T. Mikulchyk, P. Stoeva, A. Kaworek. Characterisation of holographic recording in environmentally stable photopolymerisable glass. Appl. Sci., 12, 5969(2022).

    [29] T. Mikulchyk, M. Oubaha, A. Kaworek. Synthesis of fast curing, water-resistant and photopolymerizable glass for recording of holographic structures by one- and two-photon lithography. Adv. Opt. Mater., 10, 2102089(2022).

    Pamela Stoeva, Tatsiana Mikulchyk, Suzanne Martin, Maria Antonietta Ferrara, Giuseppe Coppola, Izabela Naydenova, "Holographic multi-waveguide system: towards implementation in wearable sensor technologies," Photonics Res. 13, 1428 (2025)
    Download Citation