• Journal of Semiconductors
  • Vol. 46, Issue 2, 021401 (2025)
Jinming Bi1, Yanran Li1, Rong Lu1, Honglin Song1, and Jie Jiang1,2,*
Author Affiliations
  • 1Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China
  • 2State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
  • show less
    DOI: 10.1088/1674-4926/24090042 Cite this Article
    Jinming Bi, Yanran Li, Rong Lu, Honglin Song, Jie Jiang. Electrolyte-gated optoelectronic transistors for neuromorphic applications[J]. Journal of Semiconductors, 2025, 46(2): 021401 Copy Citation Text show less
    References

    [1] B J Shastri, A N Tait, T Ferreira de Lima et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics, 15, 102(2021).

    [2] J M Wu, X Lin, Y C Guo et al. Analog optical computing for artificial intelligence. Engineering, 10, 133(2022).

    [3] J S Tang, F Yuan, X K Shen et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: Fundamentals, progress, and challenges. Adv Mater, 31, 1902761(2019).

    [4] L Wan. High χ polystyrene-b-polycarbonate for next generation lithography. Sci China Chem, 60, 679(2017).

    [5] S Manipatruni, D E Nikonov, I A Young. Beyond CMOS computing with spin and polarization. Nat Phys, 14, 338(2018).

    [6] L N Meng, N Xin, C Hu et al. Dual-gated single-molecule field-effect transistors beyond Moore’s law. Nat Commun, 13, 1410(2022).

    [7] Y S Li, Y Xiong, B X Zhai et al. Ag-doped non–imperfection-enabled uniform memristive neuromorphic device based on van der Waals indium phosphorus sulfide. Sci Adv, 10, eadk9474(2024).

    [8] X Z Niu, B B Tian, Q X Zhu et al. Ferroelectric polymers for neuromorphic computing. Appl Phys Rev, 9, 021309(2022).

    [9] S Y Wang, X X Liu, P Zhou. The road for 2D semiconductors in the silicon age. Adv Mater, 34, 2106886(2022).

    [10] S Z Liu, J M Zeng, Z X Wu et al. An ultrasmall organic synapse for neuromorphic computing. Nat Commun, 14, 7655(2023).

    [11] Y X Cao, L Yin, C Zhao et al. Perovskite-based optoelectronic systems for neuromorphic computing. Nano Energy, 120, 109169(2024).

    [12] F M Ma, Y B Zhu, Z W Xu et al. Optoelectronic perovskite synapses for neuromorphic computing. Adv Funct Mater, 30, 1908901(2020).

    [13] S W Xue, S Y Wang, T X Wu et al. Hybrid neuromorphic hardware with sparing 2D synapse and CMOS neuron for character recognition. Sci Bull, 68, 2336(2023).

    [14] F C Wu, C H Chou, T Y Tseng. CMOS-compatible memristor for optoelectronic neuromorphic computing. Nanoscale Res Lett, 17, 105(2022).

    [15] Z Y He, T Y Wang, J L Meng et al. CMOS back-end compatible memristors for in situ digital and neuromorphic computing applications. Mater Horiz, 8, 3345(2021).

    [16] Y X Zhu, H W Mao, Y Zhu et al. CMOS-compatible neuromorphic devices for neuromorphic perception and computing: A review. Int J Extrem Manuf, 5, 042010(2023).

    [17] B Nketia-Yawson, S J Kang, G D Tabi et al. Transistors: Ultrahigh mobility in solution-processed solid-state electrolyte-gated transistors. Adv Mater, 29, 1605685(2017).

    [18] K Xu, H Lu, E W Kinder et al. Monolayer solid-state electrolyte for electric double layer gating of graphene field-effect transistors. ACS Nano, 11, 5453(2017).

    [19] H F Ling, D A Koutsouras, S Kazemzadeh et al. Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Appl Phys Rev, 7, 011307(2020).

    [20] B W Yao, J Q Li, X D Chen et al. Non-volatile electrolyte-gated transistors based on graphdiyne/MoS2 with robust stability for low-power neuromorphic computing and logic-In-memory. Adv Funct Mater, 31, 2100069(2021).

    [21] H Xu, D S Shang, Q Luo et al. A low-power vertical dual-gate neurotransistor with short-term memory for high energy-efficient neuromorphic computing. Nat Commun, 14, 6385(2023).

    [22] M Jin, H Lee, J H Lee et al. Ferroelectrically modulated ion dynamics in Li+ electrolyte-gated transistors for neuromorphic computing. Appl Phys Rev, 10, 011407(2023).

    [23] F Zare Bidoky, C D Frisbie. Sub-3 V, MHz-class electrolyte-gated transistors and inverters. ACS Appl Mater Interfaces, 14, 21295(2022).

    [24] H L Song, Y R Li, Z H Huang et al. Flexible electrolyte-based devices for neuromorphic electronics. IEEE J Flex Electron, 3, 29(2024).

    [25] J K Qin, F C Zhou, J L Wang et al. Anisotropic signal processing with trigonal selenium nanosheet synaptic transistors. ACS Nano, 14, 10018(2020).

    [26] L Yin, C Han, Q T Zhang et al. Synaptic Silicon-nanocrystal phototransistors for neuromorphic computing. Nano Energy, 63, 103859(2019).

    [27] J T Fu, H Jiang, C B Nie et al. Polarity-tunable field effect phototransistors. Nano Lett, 23, 4923(2023).

    [28] C Sun, X R Liu, Q X Yao et al. A discolorable flexible synaptic transistor for wearable health monitoring. ACS Nano, 18, 515(2024).

    [29] S M Kwon, J Y Kwak, S Song et al. Large-area pixelized optoelectronic neuromorphic devices with multispectral light-modulated bidirectional synaptic circuits. Adv Mater, 33, 2105017(2021).

    [30] J X Chen, X Y Liu, Q S Zhu et al. 2D Ca2Nb3O10 optoelectronic neuromorphic device for ultrasensitive UV-C vision and encrypted communication. Adv Funct Mater, 34, 2402684(2024).

    [31] W Huang, H X Zhang, J W Tang et al. Self-powered optoelectronic synaptic devices for neuromorphic computing with the lowest energy consumption density. ACS Photonics, 11, 3095(2024).

    [32] X Y Wang, Y X Zong, D Y Liu et al. Advanced optoelectronic devices for neuromorphic analog based on low-dimensional semiconductors. Adv Funct Mater, 33, 2213894(2023).

    [33] Y Liu, B Wang, L Wu et al. Artificial visual synaptic architecture with high-linearity light-modulated weight for optoelectronic neuromorphic computing. ACS Appl Mater Interfaces, 15, 51380(2023).

    [34] D Kumar, H R Li, U K Das et al. Flexible solution-processable black-phosphorus-based optoelectronic memristive synapses for neuromorphic computing and artificial visual perception applications. Adv Mater, 35, 2300446(2023).

    [35] X Wang, Y X Ran, X Q Li et al. Bio-inspired artificial synaptic transistors: Evolution from innovative basic units to system integration. Mater Horiz, 10, 3269(2023).

    [36] J Q Yang, R P Wang, Y Ren et al. Neuromorphic engineering: From biological to spike-based hardware nervous systems. Adv Mater, 32, 2003610(2020).

    [37] Y H Chen, G Y Gao, J Zhao et al. Piezotronic graphene artificial sensory synapse. Adv Funct Mater, 29, 1900959(2019).

    [38] X B Yan, X Y Li, Z Y Zhou et al. Flexible transparent organic artificial synapse based on the tungsten/egg albumen/indium tin oxide/polyethylene terephthalate memristor. ACS Appl Mater Interfaces, 11, 18654(2019).

    [39] S Q Lan, J F Zhong, J W Chen et al. An optoelectronic synaptic transistor with efficient dual modulation by light illumination. J Mater Chem C, 9, 3412(2021).

    [40] Y D Ke, R J Yu, S Q Lan et al. Polymer bulk-heterojunction synaptic field-effect transistors with tunable decay constant. J Mater Chem C, 9, 4854(2021).

    [41] J Zhao, F Liu, Q Huang et al. Charge trap-based carbon nanotube transistor for synaptic function mimicking. Nano Res, 14, 4258(2021).

    [42] H Y Yu, H H Wei, J D Gong et al. Evolution of bio-inspired artificial synapses: Materials, structures, and mechanisms. Small, 17, 2000041(2021).

    [43] M J Han, V V Tsukruk. Trainable bilingual synaptic functions in bio-enabled synaptic transistors. ACS Nano, 17, 18883(2023).

    [44] L Q Guo, G F Zhang, H Han et al. Light/electric modulated approach for logic functions and artificial synapse behaviors by flexible IGZO TFTs with low power consumption. J Phys D Appl Phys, 55, 195108(2022).

    [45] W T Xu, T L Nguyen, Y T Kim et al. Ultrasensitive artificial synapse based on conjugated polyelectrolyte. Nano Energy, 48, 575(2018).

    [46] Z H Huang, Y R Li, Y Zhang et al. 2D multifunctional devices: From material preparation to device fabrication and neuromorphic applications. Int J Extrem Manuf, 6, 032003(2024).

    [47] Y R Li, Z H Huang, Y Zhang et al. Bioinspired vertical transistors from artificial synapse to neuromorphic system. Phys Status Solidi RRL, 17, 2300181(2023).

    [48] L Danial, E Pikhay, E Herbelin et al. Two-terminal floating-gate transistors with a low-power memristive operation mode for analogue neuromorphic computing. Nat Electron, 2, 596(2019).

    [49] J Wen, L Q Zhu, Y M Fu et al. Activity dependent synaptic plasticity mimicked on indium–tin–oxide electric-double-layer transistor. ACS Appl Mater Interfaces, 9, 37064(2017).

    [50] Z Y Feng, J R Yu, Y C Wei et al. Tribo-ferro-optoelectronic neuromorphic transistor of α-In2Se3. Brain-X, 1, e24(2023).

    [51] H Lee, J Cho, M Jin et al. Electrochemical analysis of ion effects on electrolyte-gated synaptic transistor characteristics. ACS Nano, 18, 5383(2024).

    [52] W H Brattain, C G B Garrett. Experiments on the interface between germanium and an electrolyte. Bell Syst Tech J, 34, 129(1955).

    [53] X J Yu, J B Xu, W Y Cheung et al. Optimizing the growth of vanadyl-phthalocyanine thin films for high-mobility organic thin-film transistors. J Appl Phys, 102, 103711(2007).

    [54] Y L He, Y Yang, S Nie et al. Electric-double-layer transistors for synaptic devices and neuromorphic systems. J Mater Chem C, 6, 5336(2018).

    [55] N Liu, R Chen, Q Wan. Recent advances in electric-double-layer transistors for bio-chemical sensing applications. Sensors, 19, 3425(2019).

    [56] L L Zhang, X S Zhao. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev, 38, 2520(2009).

    [57] H N Wang, L Pilon. Accurate simulations of electric double layer capacitance of ultramicroelectrodes. J Phys Chem C, 115, 16711(2011).

    [58] D L Chapman. LI. A contribution to the theory of electrocapillarity. Lond Edinb Dublin Philos Mag J Sci, 25, 475(1913).

    [59] S Y Wang, C S Chen, Z H Yu et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv Mater, 31, 1806227(2019).

    [60] C S Yang, D S Shang, N Liu et al. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv Funct Mater, 28, 1804170(2018).

    [61] O Nordness, J F Brennecke. Ion dissociation in ionic liquids and ionic liquid solutions. Chem Rev, 120, 12873(2020).

    [62] M Matsumoto, S Shimizu, R Sotoike et al. Exceptionally high electric double layer capacitances of oligomeric ionic liquids. J Am Chem Soc, 139, 16072(2017).

    [63] S A Gajar, M W Geis. An ionic liquid-channel field-effect transistor. IEEE Trans Electron Devices, 39, 2649(1992).

    [64] N Xin, X X Li, C C Jia et al. Tuning charge transport in aromatic-ring single-molecule junctions via ionic-liquid gating. Angew Chem Int Ed, 57, 14026(2018).

    [65] Y X Zhu, G X Liu, Z J Xin et al. Solution-processed, electrolyte-gated In2O3 flexible synaptic transistors for brain-inspired neuromorphic applications. ACS Appl Mater Interfaces, 12, 1061(2020).

    [66] H J Zhang, C Berthod, H Berger et al. Band filling and cross quantum capacitance in ion-gated semiconducting transition metal dichalcogenide monolayers. Nano Lett, 19, 8836(2019).

    [67] Y J Zhang, J T Ye, Y Yomogida et al. Formation of a stable p–n junction in a liquid-gated MoS2 ambipolar transistor. Nano Lett, 13, 3023(2013).

    [68] Y R Gao, W X Zhang, L Y Li et al. Ionic liquid-based gels for biomedical applications. Chem Eng J, 452, 139248(2023).

    [69] W Zan, Q C Zhang, H Xu et al. Large capacitance and fast polarization response of thin electrolyte dielectrics by spin coating for two-dimensional MoS2 devices. Nano Res, 11, 3739(2018).

    [70] H L Xu, S Fathipour, E W Kinder et al. Reconfigurable ion gating of 2H-MoTe2 field-effect transistors using poly(ethylene oxide)-CsClO4 solid polymer electrolyte. ACS Nano, 9, 4900(2015).

    [71] B M Wu, X D Wang, H W Tang et al. Multifunctional MoS2 transistors with electrolyte gel gating. Small, 16, 2000420(2020).

    [72] L Z Long, S J Wang, M Xiao et al. Polymer electrolytes for lithium polymer batteries. J Mater Chem A, 4, 10038(2016).

    [73] M J Panzer, C D Frisbie. High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection. Adv Funct Mater, 16, 1051(2006).

    [74] Y R Li, K Yin, Y Diao et al. A biopolymer-gated ionotronic junctionless oxide transistor array for spatiotemporal pain-perception emulation in nociceptor network. Nanoscale, 14, 2316(2022).

    [75] R Liu, L Q Zhu, W Wang et al. Biodegradable oxide synaptic transistors gated by a biopolymer electrolyte. J Mater Chem C, 4, 7744(2016).

    [76] G Y Gou, J Sun, C Qian et al. Artificial synapses based on biopolymer electrolyte-coupled SnO2 nanowire transistors. J Mater Chem C, 4, 11110(2016).

    [77] L Porz, T Swamy, B W Sheldon et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater, 7, 1701003(2017).

    [78] S Sen, E Trevisanello, E Niemöller et al. The role of polymers in lithium solid-state batteries with inorganic solid electrolytes. J Mater Chem A, 9, 18701(2021).

    [79] F Torricelli, D Z Adrahtas, Z N Bao et al. Electrolyte-gated transistors for enhanced performance bioelectronics. Nat Rev Meth Primers, 1, 66(2021).

    [80] D G Jin, H Y Yu. First demonstration of yttria-stabilized hafnia-based long-retention solid-state electrolyte-gated transistor for human-like neuromorphic computing. Small, 20, 2309467(2024).

    [81] B Park, Y Hwang, O Kwon et al. Robust 2D MoS2 artificial synapse device based on a lithium silicate solid electrolyte for high-precision analogue neuromorphic computing. ACS Appl Mater Interfaces, 14, 53038(2022).

    [82] P Shi, D Wang, T L Yu et al. Solid-state electrolyte gated synaptic transistor based on SrFeO2.5 film channel. Mater Des, 210, 110022(2021).

    [83] D H Kim, Y H Kwon, N J Seong et al. Weighted-sum operation of three-terminal synapse transistors in array configuration using spin-coated Li-doped ZrO2 electrolyte gate insulator. ACS Appl Mater Interfaces, 15, 54622(2023).

    [84] Q N Wang, T S Zhao, C Zhao et al. Solid-state electrolyte gate transistor with ion doping for biosignal classification of neuromorphic computing. Adv Electron Mater, 8, 2101260(2022).

    [85] M Jin, H Lee, C Im et al. Interfacial ion-trapping electrolyte-gated transistors for high-fidelity neuromorphic computing. Adv Funct Mater, 32, 2201048(2022).

    [86] P Gkoupidenis, N Schaefer, B Garlan et al. Neuromorphic functions in PEDOT: PSS organic electrochemical transistors. Adv Mater, 27, 7176(2015).

    [87] F Yu, L Q Zhu, W T Gao et al. Chitosan-based polysaccharide-gated flexible indium tin oxide synaptic transistor with learning abilities. ACS Appl Mater Interfaces, 10, 16881(2018).

    [88] R A John, F C Liu, N A Chien et al. Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: Coexistence of hebbian and homeostatic synaptic metaplasticity. Adv Mater, 30, 1800220(2018).

    [89] X Y Li, J S Tang, Q T Zhang et al. Power-efficient neural network with artificial dendrites. Nat Nanotechnol, 15, 776(2020).

    [90] C X Wu, T W Kim, H Y Choi et al. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. Nat Commun, 8, 752(2017).

    [91] A Sebastian, A Pannone, S Subbulakshmi Radhakrishnan et al. Gaussian synapses for probabilistic neural networks. Nat Commun, 10, 4199(2019).

    [92] Y Park, J S Lee. Artificial synapses with short- and long-term memory for spiking neural networks based on renewable materials. ACS Nano, 11, 8962(2017).

    [93] J H Baek, K J Kwak, S J Kim et al. Two-terminal lithium-mediated artificial synapses with enhanced weight modulation for feasible hardware neural networks. Nanomicro Lett, 15, 69(2023).

    [94] C Qian, L A Kong, J L Yang et al. Multi-gate organic neuron transistors for spatiotemporal information processing. Appl Phys Lett, 110, 083302(2017).

    [95] P Gkoupidenis, D A Koutsouras, T Lonjaret et al. Orientation selectivity in a multi-gated organic electrochemical transistor. Sci Rep, 6, 27007(2016).

    [96] C J Wan, Y H Liu, L Q Zhu et al. Short-term synaptic plasticity regulation in solution-gated indium–gallium–zinc-oxide electric-double-layer transistors. ACS Appl Mater Interfaces, 8, 9762(2016).

    [97] C J Wan, Y H Liu, P Feng et al. Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates. Adv Mater, 28, 5878(2016).

    [98] Y L He, S Nie, R Liu et al. Spatiotemporal information processing emulated by multiterminal neuro-transistor networks. Adv Mater, 31, 1900903(2019).

    [99] Y Fu, L A Kong, Y Chen et al. Flexible neuromorphic architectures based on self-supported multiterminal organic transistors. ACS Appl Mater Interfaces, 10, 26443(2018).

    [100] W Du, C H Li, Y X Xiao et al. Mechanisms and applications of neuromorphic sensors for intelligent visual perception. Sci China Mater, 66, 4550(2023).

    [101] D D Xie, Y Z Li, J He et al. 0D-carbon-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor for emulating pulsatile photoelectric therapy of visual amnesic behaviors. Sci China Mater, 66, 4814(2023).

    [102] Y F Pei, L Yan, Z H Wu et al. Artificial visual perception nervous system based on low-dimensional material photoelectric memristors. ACS Nano, 15, 17319(2021).

    [103] P F Zhao, M Q Cui, Y T Li et al. Self-powered optoelectronic artificial synapses based on a lead-free perovskite film for artificial visual perception systems. J Mater Chem C, 11, 6212(2023).

    [104] C X Jin, W R Liu, Y C Xu et al. Artificial vision adaption mimicked by an optoelectrical In2O3 transistor array. Nano Lett, 22, 3372(2022).

    [105] H Xiong, L P Xu, C F Gao et al. Optically modulated HfS2-based synapses for artificial vision systems. ACS Appl Mater Interfaces, 13, 50132(2021).

    [106] G D Feng, J Jiang, Y H Zhao et al. A sub-10 nm vertical organic/inorganic hybrid transistor for pain-perceptual and sensitization-regulated nociceptor emulation. Adv Mater, 32, 1906171(2020).

    [107] G D Feng, J Jiang, Y R Li et al. Flexible vertical photogating transistor network with an ultrashort channel for In-sensor visual nociceptor. Adv Funct Mater, 31, 2104327(2021).

    [108] R J Yu, Y J Yan, E L Li et al. Bi-mode electrolyte-gated synaptic transistor via additional ion doping and its application to artificial nociceptors. Mater Horiz, 8, 2797(2021).

    [109] L Y Dong, B J Xue, G D Wei et al. Highly promising 2D/1D BP-C/CNT bionic opto-olfactory co-sensory artificial synapses for multisensory integration. Adv Sci, 11, 2403665(2024).

    [110] L B Chen, C Y Wen, S L Zhang et al. Artificial tactile peripheral nervous system supported by self-powered transducers. Nano Energy, 82, 105680(2021).

    [111] J K Han, I W Tcho, S B Jeon et al. Self-powered artificial mechanoreceptor based on triboelectrification for a neuromorphic tactile system. Adv Sci, 9, 2105076(2022).

    [112] K Kim, M Sim, S H Lim et al. Artificial tactile cognition: Tactile avatar: Tactile sensing system mimicking human tactile cognition. Adv Sci, 8, 2170037(2021).

    Jinming Bi, Yanran Li, Rong Lu, Honglin Song, Jie Jiang. Electrolyte-gated optoelectronic transistors for neuromorphic applications[J]. Journal of Semiconductors, 2025, 46(2): 021401
    Download Citation