• Chinese Journal of Quantum Electronics
  • Vol. 21, Issue 6, 802 (2004)
[in Chinese]*, [in Chinese], and [in Chinese]
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    [in Chinese], [in Chinese], [in Chinese]. Two-mode phase operators and eigenstates of the supersymmetric harmonic oscillator[J]. Chinese Journal of Quantum Electronics, 2004, 21(6): 802 Copy Citation Text show less
    References

    [2] Pegg D T, Barnett S M. Phase properties of the quantized single-mode electromagnetic field [J]. Phys. Rev. A,1989, 39(4): 1666-1675.

    [3] Fan H Y, Xiao M. A conveninent representation for the two-mode phase operator [J]. Phys. Lett. A, 1996, 222:299-303.

    [5] Keung W Y, Psukhatme U, Wang Q M, et al. Families of strictly isospectral potentials [J]. J. Phys. A: Math.Gen., 1989, 22: L987-L992.

    [6] Cooper F, Freedman B. Aspects of supersymmetric quantum mechanics [J]. Ann. Phys., 1983, 146 (2): 262-288.

    [7] Dutt R, Khare A, Sukhatme U P. Supersymmetry shape invariance and exactly solvablepotential [J]. Am. J. Phys.,1988, 56(2): 163-168;Sukumar C V. Supersymmetry and potentials with bound states at arbitrary energies [J].J. Phys. A, 1987, 20(9): 2461-2481.

    [8] Aragone C, Zypman F. Supercoherent states [J]. J. Phys. A: Math. Gen., 1986, 19: 2267-2279.

    [9] Orszag M, Salamo S. Squeezing and minimum uncertainty states in the supersymmetric harmonic oscillator [J].J. Phys. A: Math. Gen., 1988, 21: L1059-L1064.

    [10] Fan H Y. Wigner function: from ensemble average of density operator to its one matrix element in entangled pure states [J]. Commun. Theor. Phys., 2002, 38: 533-536.

    [in Chinese], [in Chinese], [in Chinese]. Two-mode phase operators and eigenstates of the supersymmetric harmonic oscillator[J]. Chinese Journal of Quantum Electronics, 2004, 21(6): 802
    Download Citation