• Photonic Sensors
  • Vol. 2, Issue 1, 50 (2012)
D. A. JACKSON* and M. J. COLE
Author Affiliations
  • Applied Optics Group, School of Physical Sciences, University of Kent, Canterbury, Kent,CT2 7NH, UK
  • show less
    DOI: 10.1007/s13320-011-0040-5 Cite this Article
    D. A. JACKSON, M. J. COLE. Fiber Optic Interrogation Systems for Hypervelocity and Low Velocity Impact Studies[J]. Photonic Sensors, 2012, 2(1): 50 Copy Citation Text show less
    References

    [1] M. J. Burchell, M. J. Cole, J. A. M. McDonnell, and J. C. Zarnecki, “Hypervelocity impact studies using the 2 MV Van de Graaff dust accelerator and two stage light gas gun of the University of Kent at Canterbury,” Meas. Sci. Techno., vol. 10, no. 1, pp. 41–50, 1999.

    [2] M. J. Burchell, S. Standen, M. J. Cole, R. D. Corsaro, F. Giovane, J-C. Liou, V. Pisacane, and A. Sadilek, “Acoustic response of aluminium and Duroid plates to hypervelocity impacts,” Int. Impact Eng,, vol. 38, no. 6, pp. 426–433, 2011.

    [3] A. T. Kearsley, M. J. Burchell, M.C. Price, G. A. Graham, P. J. Wozniakiewicz, M. J. Cole, N. J. Foster, and N. Teslich, “Interpretation of Wiid 2 dust fine structure: comparison of Stardust aluminium foil craters to the three-dimensional shape of experimental impacts by artificial aggregate particles and meteorite powders,” Meteoritics & Planetary Science, vol. 44, no. 10, pp. 1489–1509, 2009.

    [4] J. H. Bae, K. H. Kim, M. H. Hong, C. H. Gim, and W. Jhe, “High-resolution confocal detection of nanometric displacement by use of a 2 × 1 optical fiber coupler,” Optics Letters, vol. 25, no. 3, pp. 1696–1698, 2000.

    [5] Yi. Meng and Weijian Yi, “Application of a PVDF-based stress gauge in determining dynamic stress-strain curves of concrete under impact testing,” Smart Mater. Struct., vol. 20, no. 6, pp. 065004(7 pages),2011.

    [6] A. D. Kersey, et al., “Fiber grating sensors,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1442–1463, 1997.

    [7] R. L. Idris, K. R. White, J. W. Pate, S. T. Vohra, C. C. Chang, B. A. Danver, and M. A. Davis, “Monitoring and evaluation of an Interstate highway bridge using a network of optical fiber sensors,” in Proceedings of the International workshop on Fiber optic Sensors for Construction materials and bridges, Newark, New Jersey, May 3–6, pp. 148–157, 1998.

    [8] U. Sennhauser, R. Bronnimann, P. Mauron, and M. Nellen. “Reliability of optical fiber and Bragg grating sensors for Bridge monitoring,” in Proceedings of the International workshop on Fiber optic Sensors for Construction materials and bridges, Newark, New Jersey, May 3–6, pp. 117–128, 1998.

    [9] A. D. Kersey, “Optical fiber sensor for permanent down-well monitoring applications in the oil and gas industry,” IEICE Trans. Electron., vol. E83-C, no. 3, pp. 400–404 ,2000. D. A. JACKSON et al.: Fiber Optic Interrogation Systems for Hypervelocity and Low Velocity Impact Studies

    [10] Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “Optical in-fiber Bragg grating sensor systems for medical applications,” J. Biomed. Opt., vol. 3, no. 1, pp. 38–44, 1998.

    [11] N. E. Fisher, D. J. Webb, C. N. Pannell, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, and D. A. Jackson, “Ultrasonic field and temperature sensor based on short in-fiber Bragg gratings,” Electronics Letters, vol. 34, no. 11, pp. 1139–1140, 1998.

    [12] A. Propst, K Peters, M.A. Zirkry, W Kunzler, Z. Zhu, N. Wirthlin, R. Selfidge, and S. Schultz, “Dynamic, full-spectral interrogation of fiber Bragg grating sensors for impact testing of composite laminates,” in Proc. SPIE, vol. 7503, pp. 75030G, 2009.

    [13] B. Culshaw, G. Thursby, D. Betz, and B. Sorazu, “The detection of ultrasound using fiber-optic sensors,” IEEE Sensors, vol. 8, no. 7, pp. 1360–1367, 2008.

    [14] D. A. Jackson, “Dynamic studies of fiber Bragg gratings,” in Proc. SPIE, Fourth European Workshop on Optical fiber Sensors, vol. 7653, pp. 76503, 2010.

    [15] R. Isago, K. Nakamura, and S. Ueha, “A high reading rate FBG sensor system using a high-speed swept light source based on fiber vibrations,” in Proc. SPIE, vol. 7004, pp. 700411, 2008.

    [16] E. J. Jung, C. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Optics Express, vol. 16, no. 21, pp. 16552–16559, 2007.

    [17] B. C. Lee, M. H. Oh, and M. Y. Jeon, “Fiber Bragg grating sensor interrogation with 1.3 μm Fourier domain mode-locked wavelength swept laser,” in Proc. SPIE, vol. 7503, pp. 75035F, 2009.

    [18] H. D. Lee, E.J.Jung, M. Y. Jeong, and C. Kim, “Linearized interrogation of FDML FBG sensor system using PMF Sagnac interferometer,” in Proc. SPIE, vol. 7503, pp. 750355, 2009.

    [19] Y. J. Rao, A. B. Lobo Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, “Combined spatial-and time-division-multiplexing scheme for fiber grating sensors with drift-compensated phase-sensitive detection,” Optics Letters, vol. 20, no. 20, pp. 2149–2151, 1995.

    D. A. JACKSON, M. J. COLE. Fiber Optic Interrogation Systems for Hypervelocity and Low Velocity Impact Studies[J]. Photonic Sensors, 2012, 2(1): 50
    Download Citation