• Acta Optica Sinica
  • Vol. 36, Issue 10, 1027001 (2016)
Jin Xiaoli1、2、*, Su Jing1、2, and Zheng Yaohui1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201636.1027001 Cite this Article Set citation alerts
    Jin Xiaoli, Su Jing, Zheng Yaohui. Influence of the Non-Ideal Balanced Homodyne Detection on the Measured Squeezing Degree[J]. Acta Optica Sinica, 2016, 36(10): 1027001 Copy Citation Text show less
    References

    [1] Braunstein S L, van Loock P. Quantum information with continuous variables[J]. Reviews of Modern Physics, 2005, 77(2): 513-577.

    [2] Furusawa A, Srensen J L, Braunstein S L, et al. Unconditional quantum teleportation[J]. Science, 1998, 282(5389): 706-709.

    [3] Bowen W P, Treps N, Buchler B C, et al. Experimental investigation of continuous-variable quantum teleportation[J]. Physical Review A, 2005, 67(3): 032302.

    [4] Takei N, Yonezawa H, Aoki T, et al. High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continous variables[J]. Physical Review Letters, 2005, 94(22): 220502.

    [5] Liu J M, Li J, Guo G C. Improving the fidelity of continuous-variable quantum teleportation by tuning displacement gain[J]. Chinese Optics Letters, 2003, 1(2): 114-117.

    [6] Vahlbruch H, Mehmet M, Chelkowski S, et al. Observation of squeezed light with 10 dB quantum-noise reduction[J]. Physical Review Letters, 2008, 100(3): 033602.

    [7] Chen H N, Liu J M. Teleportation of a two-particle four-component squeezed vacuum state by linear optical elements[J]. Chinese Optics Letters, 2009, 7(5): 440-442.

    [8] Bencheikh K, Symul T, Jankovic A, et al. Quantum key distribution with continuous variables[J]. Journal of Modern Optics, 2001, 48(13): 1903-1920.

    [9] Su X L, Wang W Z, Wang Y, et al. Continuous variable quantum key distribution based on optical entangled states without signal modulation[J]. Europhysics Letters, 2009, 87(2): 20005.

    [10] Menicucci N C, Van Loock P, Gu M, et al. Universal quantum computation with continuous-variable cluster states[J]. Physical Review Letters, 2006, 97(11): 110501.

    [11] Deng X W, Hao S H, Tian C X, et al. Disappearance and revival of squeezing in quantum communication with squeezed state over a noisy channel[J]. Applied Physics Letters, 2016, 108(8): 081105.

    [12] Hao S H, Deng X W, Su X L, et al. Gates for one-way quantum computation based on Einstein-Podolsky-Rosen entanglement[J]. Physical Review A, 2014, 89(3): 032311.

    [13] Hao S H, Deng X W,Zhang Q, et al. Distribution of a modulated squeezed state over a lossy channel[J]. Chinese Optics Letters, 2015, 13(12): 122701.

    [14] Zheng Y H, Wu Z Q, Huo M R, et al. Generation of a continuous-wave squeezed vacuum state at 1.3 μm by employing a home-made all-solid-state laser as pump source[J]. Chinese Physics B, 2013, 22(9): 094206.

    [15] Takeno Y, Yukawa M, Yonezawa H, et al. Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement[J]. Optics Express, 2007, 15(7): 4321-4327.

    [16] Vahlbruch H, Mehmet M, Chelkowski S, et al. Observation of squeezed light with 10 dB quantum-noise reduction[J]. Physical Review Letters, 2008, 100(3): 033602.

    [17] Mehmet M, Ast S, Eberle T, et al. Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB[J]. Optics Express, 2011, 19(25): 25763-25772.

    [18] Breitenbach G, Schiller S, Mlynek J. Measurement of the quantum states of squeezed light[J]. Nature, 1997, 387(6632): 471-475.

    [19] Zhou H J, Yang W H, Li Z X, et al. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement[J]. Review of Scientific Instruments, 2014, 85(1): 013111.

    [20] Zhou H J, Wang W Z, Chen C Y, et al. A low-noise, large-dynamic-range-enhanced amplifier based on JFET buffering input and JFET bootstrap structure[J]. IEEE Sensors Journal, 2015, 15(4): 2101-2105.

    [21] Zhou Qianqian, Liu Jianli, Zhang Kuanshou. Low-noise, broadband photo-detector designs in quantum optics[J]. Acta Sinica Quantum Optica, 2010, 16(2): 152-157.

    [22] Wang Jinjing, Jia Xiaojun, Peng Kunchi. Improvement of balanced homodyne detector[J]. Acta Optica Sinica, 2012, 32(1): 0127001.

    [23] Jin X L, Su J, Zheng Y H, et al. Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes[J]. Optics Express, 2015, 23(18): 23859-23866.

    [24] Yuen H P, Chan V W S. Noise in homodyne and heterodyne detection[J]. Optics Letters, 1983, 8(3): 177-179.

    [25] Stefszky M S, Mow-Lowry C M, Chua S Y, et al. Balanced homodyne detection of optical quantum states at audio-band frequencies and below[J]. Classical and Quantum Gravity, 2012, 29(14): 145015.

    [26] Vasilyev M, Choi S K, Kumar P, et al. Tomographic measurement of joint photon statistics of the twin-beam quantum state[J]. Physical Review Letters, 2000, 84(11): 2354-2357.

    CLP Journals

    [1] Yingrong Sun, Meiru Huo, Zhihui Yan, Xiaojun Jia. Quantum Teleportation Based on Four-Partite Entangled States[J]. Acta Optica Sinica, 2018, 38(5): 0527001

    [2] Zhang Wenhui, Yang Wenhai, Shi Shaoping, Zheng Yaohui, Wang Yajun. Mode Matching in Preparation of Squeezed Field with High Compressibility[J]. Chinese Journal of Lasers, 2017, 44(11): 1112001

    [3] Yaoyao Zhou, Juan Yu, Zhihui Yan, Xiaojun Jia. Entanglement Source with High Entanglement Degree Based on Wedged Nonlinear Crystals[J]. Acta Optica Sinica, 2018, 38(7): 0727001

    Jin Xiaoli, Su Jing, Zheng Yaohui. Influence of the Non-Ideal Balanced Homodyne Detection on the Measured Squeezing Degree[J]. Acta Optica Sinica, 2016, 36(10): 1027001
    Download Citation