• Chinese Optics Letters
  • Vol. 20, Issue 9, 093201 (2022)
Hengyi Zheng1、2, Fukang Yin1、2, Tie-Jun Wang1、2、*, Yaoxiang Liu1, Yingxia Wei1, Bin Zhu3, Kainan Zhou3, and Yuxin Leng1、2
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics and CAS Center for Excellence in Ultra-intense Laser Science, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Laser Fusion Research Center and Science & Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, Mianyang 621999, China
  • show less
    DOI: 10.3788/COL202220.093201 Cite this Article Set citation alerts
    Hengyi Zheng, Fukang Yin, Tie-Jun Wang, Yaoxiang Liu, Yingxia Wei, Bin Zhu, Kainan Zhou, Yuxin Leng. Time-resolved measurements of electron density and plasma diameter of 1 kHz femtosecond laser filament in air[J]. Chinese Optics Letters, 2022, 20(9): 093201 Copy Citation Text show less
    Cited By
    Article index updated: Mar. 8, 2024
    Citation counts are provided from Web of Science. The counts may vary by service, and are reliant on the availability of their data.
    The article is cited by 5 article(s) from Web of Science.
    Hengyi Zheng, Fukang Yin, Tie-Jun Wang, Yaoxiang Liu, Yingxia Wei, Bin Zhu, Kainan Zhou, Yuxin Leng. Time-resolved measurements of electron density and plasma diameter of 1 kHz femtosecond laser filament in air[J]. Chinese Optics Letters, 2022, 20(9): 093201
    Download Citation