• Chinese Optics Letters
  • Vol. 21, Issue 1, 011407 (2023)
Zhiwei Yang1、2, Xu Wu2、*, Jihong Pei1, and Shuangchen Ruan1、2、**
Author Affiliations
  • 1College of Electronic Information Engineering, Shenzhen University, Shenzhen 518060, China
  • 2Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen 518118, China
  • show less
    DOI: 10.3788/COL202321.011407 Cite this Article Set citation alerts
    Zhiwei Yang, Xu Wu, Jihong Pei, Shuangchen Ruan. Improvement of bandwidth in a 100 kHz swept laser source with phase controllable signal driving[J]. Chinese Optics Letters, 2023, 21(1): 011407 Copy Citation Text show less
    References

    [1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, A. Et. Optical coherence tomography. Science, 254, 1178(1991).

    [2] T. Klein, R. Huber. High-speed OCT light sources and systems [Invited]. Biomed. Opt. Express, 8, 828(2017).

    [3] T. Wu, Z. Ding, K. Wang, L. Xu, M. Chen, C. Wang. Swept source optical coherence tomography based on scanning fiber probe. Chin. Opt. Lett., 29, 37(2009).

    [4] T. Wu, Y. Liu. Optimal non-uniform fast Fourier transform for high-speed swept source optical coherence tomography. Chin. Opt. Lett., 11, 021702(2013).

    [5] M. Chen, Z. Ding, L. Xu, T. Wu, C. Wang, G. Shi, Y. Zhang. All-fiber ring-cavity based frequency swept laser source for frequency domain OCT. Chin. Opt. Lett., 8, 202(2010).

    [6] M. F. Shirazi, M. Jeon, J. Kim. 850 nm centered wavelength-swept laser based on a wavelength selection Galvo filter. Chin. Opt. Lett., 14, 011401(2016).

    [7] R. Huber. Fourier domain mode locking (FDML): a new laser operating regime and applications for biomedical imaging, profilometry, ranging and sensing. Opt. Express, 14, 3225(2006).

    [8] D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, R. A. Huber. Extended coherence length Fourier domain mode locked lasers at 1310 nm. Opt. Express, 19, 20930(2011).

    [9] A. Takada, M. Fujino, S. Nagano. Dispersion dependence of linewidth in actively mode-locked ring lasers. Opt. Express, 20, 8310(2011).

    [10] W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, R. Huber. Extended coherence length megahertz FDML and its application for anterior segment imaging. Biomed. Opt. Express, 3, 2647(2012).

    [11] N. Lippok, S. Coen, P. Nielsen, F. Vanholsbeeck. Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform. Opt. Express, 20, 23398(2012).

    [12] S. Tozburun, M. Siddiqui, B. J. Vakoc. 14-A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography. Opt. Express, 22, 3414(2014).

    [13] T. Pfeiffer, M. Petermann, W. Draxinger, C. Jirauschek, R. Huber. Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography. Biomed. Opt. Express, 9, 4130(2018).

    [14] S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, P. E. Andersen. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier. Opt. Express, 18, 15820(2010).

    [15] W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma. Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers. IEEE Photon. Technol. Lett., 17, 678(2005).

    [16] M. Yong Jeon, J. Zhang, Q. Wang, Z. Chen, D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, R. Huber, M. Wojtkowski, K. Taira, K. Hsu, W. Jenkins, D. C. Adler, M. Gargesha, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, A. M. Rollins, Y. Chen, J. Schmitt, J. Connolly, V. J. Srinivasan. High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs. Opt. Express, 16, 2547(2008).

    [17] W. Jang, J. Lim, H. Kim, J. Ha. Broadband wavelength swept source combining a quantum dot and a quantum well SOA in the wavelength range of 1153–1366 nm. Electron. Lett., 49, 1205(2013).

    [18] S. H. Kassani, M. Villiger, N. Uribe-Patarroyo, C. Jun, R. Khazaeinezhad, N. Lippok, B. E. Bouma. Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging. Opt. Express, 25, 8255(2017).

    [19] B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, J. G. Fujimoto. Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt. Express, 18, 20029(2010).

    [20] V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, A. Cable. Design and performance of broadly tunable, narrow line-width, high repetition rate 1310 nm VCSELs for swept source optical coherence tomography. Proc. SPIE, 8276, 82760D(2012).

    [21] V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, A. Cable. OCT imaging up to 760 kHz axial scan rate using single-mode 1310 nm MEMS-tunable VCSELs with >100 nm tuning range. CLEO: Science and Innovations(2011).

    [22] R. Huber, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto. Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second. Opt. Lett., 32, 2049(2007).

    [23] E. J. Jung, C.-S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, Z. Chen. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser. Opt. Express, 16, 16552(2008).

    [24] T. Klein, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, G. Palte, R. Huber. Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography. Opt. Lett., 33, 2815(2008).

    Data from CrossRef

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    [1] 朱喆 Zhu Zhe, 王麓屹 Wang Luyi, 陈学文 Chen Xuewen, 林巍 Lin Wei, 杨洋 Yang Yang, 张静 Zhang Jing, 刘涛 Liu Tao, 韦小明 Wei Xiaoming, 杨中民 Yang Zhongmin.

    Zhiwei Yang, Xu Wu, Jihong Pei, Shuangchen Ruan. Improvement of bandwidth in a 100 kHz swept laser source with phase controllable signal driving[J]. Chinese Optics Letters, 2023, 21(1): 011407
    Download Citation