• Photonic Sensors
  • Vol. 11, Issue 2, 141 (2021)
Wei JIN1、2、*, Haihong BAO1、2, Pengcheng ZHAO1、2, Yan ZHAO1、2, Yun QI1、2, Chao WANG1、2, and Hoi Lut HO1、2
Author Affiliations
  • 1Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
  • 2The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
  • show less
    DOI: 10.1007/s13320-021-0627-4 Cite this Article
    Wei JIN, Haihong BAO, Pengcheng ZHAO, Yan ZHAO, Yun QI, Chao WANG, Hoi Lut HO. Recent Advances in Spectroscopic Gas Sensing With Micro/Nano-Structured Optical Fibers[J]. Photonic Sensors, 2021, 11(2): 141 Copy Citation Text show less
    References

    [1] J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Measurement Science and Technology, 2012, 24(1): 012004.

    [2] B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realisation,” Sensors and Actuators B: Chemical, 1998, 51(1–3): 25–37.

    [3] G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sensors and Actuators B: Chemical, 1997, 38(1–3): 42–47.

    [4] W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro-and nano-engineered optical fibers,” Optical Fiber Technology, 2013, 19(6): 741–759.

    [5] P. Russell, “Photonic crystal fibers,” Science, 2003, 299(5605): 358–362.

    [6] P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J. M. Ménard, et al., “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Optics Letters, 2016, 41(9): 1961–1964.

    [7] S. Gao, Y. Wang, W. Ding, D. Jiang, S. Gu, X. Zhang, et al., “Hollow-core conjoined-tube negativecurvature fibre with ultralow loss,” Nature Communications, 2018, 9(1): 1–6.

    [8] L. Tong and M. Sumetsky, Subwavelength and nanometer diameter optical fibers. Berlin: Springer Science & Business Media, 2011.

    [9] T. M. Monro, S. Warren-Smith, E. P. Schartner, A. Fran-ois, S. Heng, H. Ebendorff-Heidepriem, et al., “Sensing with suspended-core optical fibers,” Optical Fiber Technology, 2010, 16(6): 343–356.

    [10] P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, et al., “Ultimate low loss of hollow-core photonic crystal fibres,” Optics Express, 2005, 13(1): 236–244.

    [11] T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, et al., “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” Journal of Lightwave Technology, 2004, 22(1): 11–15.

    [12] F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber” Journal of Modern Optics, 2011, 58(2): 87–124.

    [13] H. Sakr, Y. Chen, G. T. Jasion, T. D. Bradley, J. R. Hayes, H. C. H. Mulvad, et al., “Hollow core optical fibres with comparable attenuation to silica fibres between 600 and 1 100 nm,” Nature Communications, 2020, 11(1): 1–10.

    [14] G. T. Jasion, T. D. Bradley, K. Harrington, H. Sakr, Y. Chen, E. N. Fokoua, et al., “Hollow core NANF with 0.28 dB/km attenuation in the C and L bands,” in Optical Fiber Communication Conference, United States, March 8–12, 2020: pp. Th4B. 4.

    [15] J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Measurement Science and Technology, 2004, 15(6): 1120.

    [16] W. Jin, H. F. Xuan, and H. L. Ho, “Sensing with hollow-core photonic bandgap fibers,” Measurement Science and Technology, 2010, 21(9): 094014.

    [17] W. Jin, H. Bao, Y. Qi, Y. Zhao, P. Zhao, S. Gao, et al., “Micro nano-structured optical fiber laser spectroscopy,” Acta Optica Sinica, 2021, 41(1): 0130002.

    [18] F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature, 2005, 434(7032): 488–491.

    [19] R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, “Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells,” Optics Express, 2006, 14(21): 9576–9583.

    [20] Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sensors and Actuators B: Chemical, 2005, 105(2): 183–186.

    [21] T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. S-rensen, T. P. Hansen, et al., “Gas sensing using air-guiding photonic bandgap fibers,” Optics Express, 2004, 12(17): 4080–4087.

    [22] Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Applied Optics, 2003, 42(18): 3509–3515.

    [23] R. M. Wynne, B. Barabadi, K. J. Creedon, and A. Ortega, “Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor,” Journal of Lightwave Technology, 2009, 27(11): 1590–1596.

    [24] J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, et al., “Towards practical gas sensing with micro-structured fibres,” Measurement Science and Technology, 2009, 20(7): 075301..

    [25] C. M. B. Cordeiro, E. M. dos Santos, C. H. Brito Cruz, C. J. S. de Matos, and D. S. Ferreira, “Lateral access to the holes of photonic crystal fibers–selective filling and sensing applications,” Optics Express, 2006, 14(18): 8403–8412.

    [26] C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Optics Express, 2007, 15(11): 6690–6695.

    [27] Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photonics Technology Letters, 2010, 22(5): 296–298.

    [28] F. Yang, W. Jin, Y. Lin, C, Wang, H. Lut, and Y. Tan, “Hollow-core microstructured optical fiber gas sensors,” Journal of Lightwave Technology, 2016, 35(16): 3413–3424.

    [29] P. Zhao, Y. Zhao, H. Bao, H. L. Ho, W. Jin, S. Fan, et al., “Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber,” Nature Communications, 2020, 11: 847.

    [30] W. Belardi, “Design and properties of hollow antiresonant fibers for the visible and near infrared spectral range,” Journal of Lightwave Technology, 2015, 33(21): 4497–4503.

    [31] W. Jin, H. Xuan, C. Wang, W. Jin, and Y. Wang, “Robust microfiber photonic microcells for sensor and device applications,” Optics Express, 2014, 22(23): 28132–28141.

    [32] C. Wang, W. Jin, J. Ma, Y. Wang, H. L. Ho, and X. Shi, “Suspended core photonic microcells for sensing and device applications,” Optics Letters, 2013, 38(11): 1881–1883.

    [33] T. A. Birks and Y. W. Li, “The shape of fiber tapers,” Journal of Lightwave Technology, 1992, 10(4): 432–438.

    [34] H. Xuan, J. Ju, and W. Jin, “Highly birefringent optical microfibers,” Optics Express, 2010, 18(4): 3828–3839.

    [35] L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” Journal of Lightwave Technology, 2007, 25(11): 3563–3574.

    [36] Y. Qi, F. Yang, Y. Lin, W. Jin, and H. L. Ho, “Nanowaveguide enhanced photothermal interferometry spectroscopy,” Journal of Lightwave Technology, 2017, 35(24): 5267–5275.

    [37] L. Kornaszewski, N. Gayraud, J. M. Stone, W. N. MacPherson, A. K. George, J. C. Knight, et al., “Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator,” Optics Express, 2007, 15(18): 11219–11224.

    [38] A. M. Cubillas, J. Hald, and J. C. Petersen, “High resolution spectroscopy of ammonia in a hollow-core fiber,” Optics Express, 2008, 16(6): 3976–3985.

    [39] F. Yang, W. Jin, Y. Cao, H. L. Ho, and Y. Wang, “Towards high sensitivity gas detection with hollow-core photonic bandgap fibers,” Optics Express, 2014, 22(20): 24894–24907.

    [40] J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, et al., “Polarization maintaining single-mode low-loss hollow-core fibres,” Nature Communications, 2014, 5: 5085.

    [41] Y. Tan, W. Jin, F. Yang, Y. Qi, Co. Zhang, Y. Lin, et al., “Hollow-core fiber-based high finesse resonating cavity for high sensitivity gas detection,” Journal of Lightwave Technology, 2017, 35(14): 2887–2893.

    [42] S. E. Bialkowski, “Photothermal spectroscopy methods for chemical analysis,” America: John Wiley & Sons, 1996.

    [43] W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nature Communications, 2015, 6: 6767.

    [44] Y. Lin, W. Jin, F. Yang, Y. Tan, and H. L. Ho, “Performance optimization of hollow-core fiber photothermal gas sensors,” Optics Letters, 2017, 42(22): 4712–4715.

    [45] Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, et al., “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Scientific Reports, 2016, 6(1): 1–12.

    [46] H. Bao, Y. Hong, W. Jin, H. L. Ho, C. Wang, S. Gao, et al., “Modeling and performance evaluation of in-line Fabry-Perot photothermal gas sensors with hollow-core optical fibers,” Optics Express, 2020, 28(4): 5423–5435.

    [47] J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Optics Express, 2015, 23(22): 29268–29278.

    [48] Y. Lin, W. Jin, F. Yang, and C. Wang, “Highly sensitive and stable all-fiber photothermal spectroscopic gas sensor,” in CLEO: Science and Innovations 2016, San Jose, California United States, June 5–10, 2016, pp. STu4H. 3.

    [49] F. Yang, Y. Tan, W. Jin, Y. Lin, Y. Qi, and H. L. Ho, “Hollow-core fiber Fabry-Perot photothermal gas sensor,” Optics Letters, 2016, 41(13): 3025–3028.

    [50] C. Yao, Q. Wang, Y. Lin, W. Jin, L. Xiao, S. Gao, et al., “Photothermal CO detection in a hollow-core negative curvature fiber,” Optics Letters, 2019, 44(16): 4048–4051.

    [51] Y. Hong, H. Bao, W. Jin, S. Jiang, H. L. Ho, S. Gao, et al., “Oxygen gas sensing with photothermal spectroscopy in a hollow-core negative curvature fiber,” Sensors, 2020, 20(21): 6084.

    [52] F. Chen, S. Jiang, W. Jin, H. Bao, H. L. Ho, C. Wang, et al., “Ethane detection with mid-infrared hollow-core fiber photothermal spectroscopy,” Optics Express, 2020, 28(25): 38115–38126.

    [53] Y. Tan, W. Jin, F. Yang, Y. Jiang, and H. L. Ho, “Cavity-enhanced photothermal gas detection with a hollow fiber Fabry-Perot absorption cell,” Journal of Lightwave Technology, 2019, 37(17): 4222–4228.

    [54] Y. Zhao, W. Jin, Y. Lin, F. Yang, and H. L. Ho, “All-fiber gas sensor with intracavity photothermal spectroscopy,” Optics Letters, 2018, 43(7): 1566–1569.

    [55] P. Zhao, H. L. Ho, W. Jin, S. Fan, S. Gao, Y. Wang, et al., “Gas sensing with mode-phase-difference photothermal spectroscopy assisted by a long period grating in a dual-mode negative-curvature hollow-core optical fiber,” Optics Letters, 2020, 45(20): 5660–5663.

    [56] M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Applied Optics, 2008, 47(23): 4255–4261.

    [57] J. L. Doménech and M. Cueto, “Sensitivity enhancement in high resolution stimulated Raman spectroscopy of gases with hollow-core photonic crystal fibers,” Optics Letters, 2013, 38(20): 4074–4077.

    [58] P. G. Westergaard, M. Lassen, and J. C. Petersen, “Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber,” Optics Express, 2015, 23(12): 16320–16328.

    [59] S. Hanf, T. B-g-zi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Analytical Chemistry, 2015, 87(2): 982–988.

    [60] F. Yang and W. Jin, “All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550 nm hollow-core fiber,” in 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, April 24–28, 2017, pp. 1–4.

    [61] H. Bao, W. Jin, Y. Miao, and H. L. Ho, “Laser-induced dispersion with stimulated Raman scattering in gas-filled optical fiber,” Journal of Lightwave Technology, 2019, 37(9): 2120–2125.

    [62] Y. Qi, Y. Zhao, H. Bao, W. Jin, and H. L. Ho, “Nanofiber enhanced stimulated Raman spectroscopy for ultra-fast, ultra-sensitive hydrogen detection with ultra-wide dynamic range,” Optica, 2019, 6(5): 570–576.

    [63] R. W. Boyd, Nonlinear optics. America: Academic Press, 2020.

    [64] Y. Lin, F. Liu, X. He, W. Jin, M. Zhang, F. Yang, et al., “Distributed gas sensing with optical fibre photothermal interferometry,” Optics Express, 2017, 25(25): 31568–31585.

    [65] F. Yang, Y. Zhao, Y. Qi, Y. Z. Tan, H. L. Ho, and W. Jin, “Towards label-free distributed fiber hydrogen sensor with stimulated Raman spectroscopy,” Optics Express, 2019, 27(9): 12869–12882.

    Wei JIN, Haihong BAO, Pengcheng ZHAO, Yan ZHAO, Yun QI, Chao WANG, Hoi Lut HO. Recent Advances in Spectroscopic Gas Sensing With Micro/Nano-Structured Optical Fibers[J]. Photonic Sensors, 2021, 11(2): 141
    Download Citation