• Acta Optica Sinica
  • Vol. 32, Issue 3, 319001 (2012)
Guo Shanlong*, Han Yashuai, Wang Jie, Yang Baodong, He Jun, and Wang Junmin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201232.0319001 Cite this Article Set citation alerts
    Guo Shanlong, Han Yashuai, Wang Jie, Yang Baodong, He Jun, Wang Junmin. Investigation of Quasi-Phase-Matching Frequency Doubling of 1560 nm Laser by Use of PPLN and PPKTP Crystals[J]. Acta Optica Sinica, 2012, 32(3): 319001 Copy Citation Text show less
    References

    [1] M. D. Eisaman, A. Andre, F. Massou et al.. Electromagnetically-induced transparency with tunable single-photon pulses [J]. Nature, 2005, 438(7069): 837~841

    [2] F. Lienhart, S. Boussen, O. Carraz et al.. Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm [J]. Appl. Phys. B, 2007, 89(2): 177~180

    [3] Y. Sortais, S. Bize, C. Nicolas et al.. Cold collision frequency shifts in an 87Rb atomic fountain [J]. Phys. Rev. Lett., 2000, 85(15): 3117~3120

    [4] N. J. Cerf, P. Grangier. From quantum cloning to quantum key distribution with continuous variables: a review [J]. J. Opt. Soc. Am. B, 2007, 24(2): 324~334

    [5] Yang Jianfeng, Yang Baodong, Gao Jing et al.. 1560 nm cw diode laser frequency doubling by using PPLN crystal and frequency cocking via rubidium absorption spectroscopy [J]. Acta Quantum Optica Sinica, 2010, 16(1): 41~47

    [6] S. L. Guo, J. F. Yang, B. D. Yang et al.. Frequency doubling of 1560 nm diode laser via PPLN and PPKTP crystals and laser frequency stabilization to rubidium absorption line[C]. SPIE, 2010, 7846: 784619

    [7] M. Y. Vatkin, A. G. Dronov, M. A. Chernikov. High power 780 nm single-frequency linearly-polarized laser [C]. SPIE, 2005, 5709: 125~132

    [8] B. Darquie, M. P. A. Jones, J. Dingjan et al.. Controlled single-photon emission from a single trapped two-level atom [J]. Science, 200, 309(5733): 454~456

    [9] J. Dingjan, B. Darquie, J. Beugnon et al.. A frequency-doubled laser system producing ns pulses for rubidium manipulation [J]. Appl. Phys. B, 2006, 82(1): 47~51

    [10] Liu Chi, Qi Yunfeng, Zhou Jun et al.. Study on characteristics of high-power single-frequncy polarization maintaining fiber amplifier [J]. Acta Optica Sinica, 2010, 30(3): 692~695

    [11] Lu Yanhua, Zhang Lei, Ma Yi et al.. Sodium guidestar laser based on high-efficiency PPSLT quasi-phase-matched sum frequency generation [J]. Acta Optica Sinica, 2010, 30(8): 2306~2310

    [12] M. M. Fejer, G. A. Magel, D. H. Jundt et al.. Quasi-phase-matched second harmonic generation: tuning and tolerances[J]. IEEE J. Quant. Electron., 1992, 28(11): 2631~2654

    [13] G. D. Boyd, D. A. Kleinman. Parametric interaction of focused Gaussian light beams[J]. J. Appl. Phys., 1968, 39(8): 3597~3639

    [14] S. C. Kumar, G. K. Samanta, M. Ebrahim-Zadeh. High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgOsPPLT [J]. Opt. Express, 2009, 17(16): 13711~13726

    [15] G. D. Miller, R. G. Batchko, W. M. Tulloch et al.. 42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate [J]. Opt. Lett., 1997, 22(24): 1834~1836

    [16] R. J. Thompson, M. Tu, D. C. Aveline et al.. High power single frequency 780 nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals [J]. Opt. Express, 2003, 11(14): 1709~2003

    [17] G. K. Samanta, S. C. Kumar, K. Devi et al.. Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency [J]. Opt. Lett., 2010, 35(20): 3513~3515

    [18] G. Stern, B. Battelier, R. Geiger et al.. Light-pulse atom interferometry in microgravity [J]. Eur. Phys. J. D, 2009, 53(3): 353~357

    [19] V. Menoret, R. Geiger, G. Stern et al.. Dual-wavelength laser source for onboard atom interferometry [J]. Opt. Lett., 2011, 36(21): 4128~4130

    [20] Wang Jing, Yang Baodong, He Jun et al.. Influence of the bandwidth of feedback loop in frequency stabilization of external-cavity diode laser by polarization spectroscopy [J]. Acta Optica Sinica, 2009, 29(2): 425~430

    [21] A. Danielli, P. Rusian, A. Arie et al.. Frequency stabilization of a frequency-doubled 1556-nm source to the 5S1/2-5D5/2 two-photon transitions of rubidium [J]. Opt. Lett., 2000, 25(12): 905~907

    CLP Journals

    [1] Li Xiongjie, Ding Jingxin, Tang Ruikai, Zhou Qian, Shi Xueshun, Yang Lechen, Zhao Kun, Pan Haifeng, Wu E. Research on Quantum Statistic Properties of Photon Number in Pulse Mode Nonlinear Frequency Up-Conversion[J]. Acta Optica Sinica, 2014, 34(5): 527002

    [2] Zhang Yuantao, Qu Qiuzhi, Qian Jun, Ren Wei, Xiang Jingfeng, Lü Desheng, Liu Liang. Thermal Effect Analysis of 1560 nm Laser Frequency Doubling in a PPLN Crystal[J]. Chinese Journal of Lasers, 2015, 42(7): 708002

    [3] Kong Yan, Zhu Huaxin, Gao Shumei. Competition of Acousto-Optical Polarization Rotation and Second Harmonic Generation in Periodically Poled Lithium Niobate[J]. Laser & Optoelectronics Progress, 2013, 50(11): 111902

    [4] Wen Xin, Han Yashuai, He Jun, Wang Yanhua, Yang Baodong, Wang Junmin. Generation of 397.5 nm Ultra-Violet Laser by Frequency Doubling in a PPKTP-Crystal Semi-Monolithic Resonant Cavity[J]. Acta Optica Sinica, 2016, 36(4): 414001

    [5] Zhang Xinxin, She Weilong. Electrically Controlled Grating Based on PPLN[J]. Acta Optica Sinica, 2015, 35(1): 105001

    Guo Shanlong, Han Yashuai, Wang Jie, Yang Baodong, He Jun, Wang Junmin. Investigation of Quasi-Phase-Matching Frequency Doubling of 1560 nm Laser by Use of PPLN and PPKTP Crystals[J]. Acta Optica Sinica, 2012, 32(3): 319001
    Download Citation