• Chinese Journal of Lasers
  • Vol. 52, Issue 12, 1202310 (2025)
Hongmao Zhang1, Wurikaixi Aiyiti1,*, and Yutao Zhang1,2
Author Affiliations
  • 1School of Mechnical Engineering, Xinjiang University, Urumqi 830017, Xinjiang , China
  • 2College of Mechanical and Electrical Engineering, Xinjiang Institute of Engineering, Urumqi 830091, Xinjiang , China
  • show less
    DOI: 10.3788/CJL241319 Cite this Article Set citation alerts
    Hongmao Zhang, Wurikaixi Aiyiti, Yutao Zhang. Study on Process Optimization and Mechanical Properties of Tantalum Formed by Selective Laser Melting[J]. Chinese Journal of Lasers, 2025, 52(12): 1202310 Copy Citation Text show less
    References

    [1] Guo Y, Chen C, Wang Q B et al. Effects of reuse on the properties of tantalum powders and tantalum parts additively manufactured by electron beam powder bed fusion[J]. Materials Research Express, 8, 046538(2021).

    [2] Balla V K, Bodhak S, Bose S et al. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties[J]. Acta Biomaterialia, 6, 3349-3359(2010).

    [3] Perry C. Biomaterials: a tantalus experience[J]. Materials Today, 14, 230(2011).

    [4] Johansson C B, Hansson H A, Albrektsson T. Qualitative interfacial study between bone and tantalum, niobium or commercially pure titanium[J]. Biomaterials, 11, 277-280(1990).

    [5] Wauthle R, van der Stok J, Amin Yavari S et al. Additively manufactured porous tantalum implants[J]. Acta Biomaterialia, 14, 217-225(2015).

    [6] Chen J, Yang Y Q, Song C H et al. Properties of 316L/CuSn10 multi-material bimetallic structure fabricated by selective laser melting[J]. Materials Science and Engineering: A, 752, 75-85(2019).

    [7] Zhou L B, Yuan T C, Li R D et al. Selective laser melting of pure tantalum: densification, microstructure and mechanical behaviors[J]. Materials Science and Engineering: A, 707, 443-451(2017).

    [8] Song C H, Deng Z T, Zou Z et al. Pure tantalum manufactured by laser powder bed fusion: influence of scanning speed on the evolution of microstructure and mechanical properties[J]. International Journal of Refractory Metals and Hard Materials, 107, 105882(2022).

    [9] Valentino G M, Banerjee A, Lark A et al. Influence of laser processing parameters on the density-ductility tradeoff in additively manufactured pure tantalum[J]. Additive Manufacturing Letters, 4, 100117(2023).

    [10] Du J G, Ren Y J, Zhang M M et al. Improving the microstructure and mechanical properties of laser powder bed fusion-fabricated tantalum by high laser energy density[J]. Materials Letters, 333, 133547(2023).

    [11] Deng Z Y, Yan X C, Dong D D et al. Study on process for medical pure tantalum parts prepared by selective laser melting(SLM) and mechanical properties[J]. Hot Working Technology, 50, 76-81(2021).

    [12] Gu D D, Hagedorn Y C, Meiners W et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 60, 3849-3860(2012).

    [13] Song J F, Fan Y M, Jiao Z X et al. Simulation of SLM formation of 316L stainless steel powder and reconstruction of single-layer multi-channel morphology[J]. Chinese Journal of Lasers, 50, 2402307(2023).

    [14] Song C H, Fu H X, Yan Z W et al. Internal defects and control methods of laser powder bed fusion forming[J]. Chinese Journal of Lasers, 49, 1402801(2022).

    [15] Yao S G, Dong Y H, Li X L et al. Causes of defects in selective laser melting of AlSi10Mg[J]. Chinese Journal of Lasers, 51, 1602307(2024).

    [16] Gu D D, Hagedorn Y C, Meiners W et al. Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM): densification, growth mechanism and wear behavior[J]. Composites Science and Technology, 71, 1612-1620(2011).

    [17] Aboulkhair N T, Everitt N M, Ashcroft I et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting[J]. Additive Manufacturing, 1, 77-86(2014).

    [18] He Y W, Chen J, Yang Q et al. Optimization of process parameters and performances of invar-alloy lattice structures manufactured via selective laser melting[J]. Laser & Optoelectronics Progress, 61, 1714001(2024).

    [19] Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 12, 254-265(2006).

    [20] Zhang L J, Fan J T, Liu D J et al. The microstructural evolution and hardness of the equiatomic CoCrCuFeNi high-entropy alloy in the semi-solid state[J]. Journal of Alloys and Compounds, 745, 75-83(2018).

    [21] Balla V K, Banerjee S, Bose S et al. Direct laser processing of a tantalum coating on titanium for bone replacement structures[J]. Acta Biomaterialia, 6, 2329-2334(2010).

    [22] Michaluk C A. Tantalum and niobium billets and methods of producing the same[P].

    [23] Marinelli G, Martina F, Ganguly S et al. Grain refinement in an unalloyed tantalum structure by combining wire+arc additive manufacturing and vertical cold rolling[J]. Additive Manufacturing, 32, 101009(2020).

    [24] Gäumann M, Bezençon C, Canalis P et al. Single-crystal laser deposition of superalloys: processing‒microstructure maps[J]. Acta Materialia, 49, 1051-1062(2001).

    [25] Tang H P, Yang K, Jia L et al. Tantalum bone implants printed by selective electron beam manufacturing (SEBM) and their clinical applications[J]. JOM, 72, 1016-1021(2020).

    [26] Boyce B L, Clark B G, Lu P et al. The morphology of tensile failure in tantalum[J]. Metallurgical and Materials Transactions A, 44, 4567-4580(2013).

    Hongmao Zhang, Wurikaixi Aiyiti, Yutao Zhang. Study on Process Optimization and Mechanical Properties of Tantalum Formed by Selective Laser Melting[J]. Chinese Journal of Lasers, 2025, 52(12): 1202310
    Download Citation