• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170617 (2019)
Xiangjie Ma**, Liming Zhou, Linghao Cheng*, and Weimin Liu
Author Affiliations
  • Institute of Photonics Technology, Jinan University, Guangzhou, Guangdong 510632, China
  • show less
    DOI: 10.3788/LOP56.170617 Cite this Article Set citation alerts
    Xiangjie Ma, Liming Zhou, Linghao Cheng, Weimin Liu. Fast and Long-Distance Brillouin Optical Time-Domain Reflectometry Based on Raman Amplification[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170617 Copy Citation Text show less
    References

    [1] Adachi S. Distributed optical fiber sensors and their applications. [C]∥2008 SICE Annual Conference, August 20-22, 2008, Chofu, Japan. New York: IEEE, 329-333(2008).

    [2] Rao Y J. Recent progress in ultra-long distributed fiber-optic sensing[J]. Acta Physica Sinica, 66, 074207(2017).

    [3] Shimizu K, Horiguchi T, Koyamada Y et al. Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber[J]. Optics Letters, 18, 185-187(1993).

    [4] Shang Q F, Hu Y T, Liu W. Feature extraction of Brillouin scattering spectrum based on cross-correlation convolution and high-order centroid calculation[J]. Chinese Journal of Lasers, 44, 1106011(2017).

    [5] Maughan S M, Kee H H, Newson T P. 57-km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection[J]. Optics Letters, 26, 331-333(2001).

    [6] Wang J J, Li Y Q. Review of methods for improving performance of Brillouin optical time-domain analysis system[J]. Laser & Optoelectronics Progress, 55, 110003(2018).

    [7] Horiguchi T, Shimizu K, Kurashima T et al. Development of a distributed sensing technique using Brillouin scattering[J]. Journal of Lightwave Technology, 13, 1296-1302(1995).

    [8] Alahbabi M, Cho Y T, Newson T P. Comparison of the methods for discriminating temperature and strain in spontaneous Brillouin-based distributed sensors[J]. Optics Letters, 29, 26-28(2004).

    [9] Alahbabi M N, Cho Y T, Newson T P et al. Influence of modulation instability on distributed optical fiber sensors based on spontaneous Brillouin scattering[J]. Journal of the Optical Society of America B, 21, 1156-1160(2004).

    [10] Alahbabi M N, Cho Y T, Newson T P. 100 km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter[J]. Measurement Science and Technology, 15, 1544-1547(2004).

    [11] Chang T Y, Koscica T E, Li D Y et al. A novel detection method of Brillouin backscattered light in optical fiber[J]. IEEE Sensors Journal, 9, 430-434(2009).

    [12] Shen Y C, Song M P, Zhang X M et al. Brillouin scattering in long optical fiber[J]. Acta Photonica Sinica, 33, 931-934(2004).

    [14] Tiwari U, Thyagarajan K, Shenoy M R. Simulation and experimental characterization of Raman/EDFA hybrid amplifier with enhanced performance[J]. Optics Communications, 282, 1563-1566(2009).

    [15] Cho Y T, Newson T P. Brillouin-based distributed fibre temperature sensor at 1.53 μm using Raman amplification. [C]∥2002 15th Optical Fiber Sensors Conference Technical Digest, May 10-10, 2002, Portland, OR, USA. New York: IEEE, 305-308(2002).

    [16] Cho Y T, Alahbabi M, Gunning M J et al. 50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification[J]. Optics Letters, 28, 1651-1653(2003).

    [17] Cho Y T, Alahbabi M N, Gunning M J et al. Enhanced performance of long range Brillouin intensity based temperature sensors using remote Raman amplification[J]. Measurement Science and Technology, 15, 1548-1552(2004).

    [18] Alahbabi M N, Cho Y T, Newson T P. 150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification[J]. Journal of the Optical Society of America B, 22, 1321-1324(2005).

    [19] Lalam N, Ng W P, Dai X et al. Sensing range improvement of Brillouin optical time domain reflectometry (BOTDR) using inline erbium-doped fibre amplifier. [C]∥2017 IEEE SENSORS, October 29-November 1, 2017, Glasgow, UK. New York: IEEE, 8233878(2017).

    [20] Maughan S M, Kee H H, Newson T P. Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter[J]. Measurement Science and Technology, 12, 834-842(2001).

    [21] Soller B J, Gifford D K, Wolfe M S et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 13, 666-674(2005).

    [22] Liang H. Research of Brillouin distributed optical fiber sensor based on coded pulses[D]. Nanjing: Nanjing University(2011).

    [23] Kurashima T, Horiguchi T, Ohno H et al. Strain and temperature characteristics of Brillouin spectra in optical fibers for distributed sensing techniques. [C]∥24th European Conference on Optical Communication, September 20-24, 1998, Madrid, Spain. New York: IEEE, 1, 149-150(1998).

    [24] Agrawal G[M]. Nonlinear fiber optics(2005).

    [25] Li W, Liu W M, Zhou L M et al. Separation of Brillouin stokes scattering and anti-stokes scattering based on orthogonal coherent receiving[J]. Chinese Journal of Lasers, 45, 0706003(2018).

    Xiangjie Ma, Liming Zhou, Linghao Cheng, Weimin Liu. Fast and Long-Distance Brillouin Optical Time-Domain Reflectometry Based on Raman Amplification[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170617
    Download Citation