• Journal of Inorganic Materials
  • Vol. 36, Issue 12, 1263 (2021)
Xin MAN*, Nan WU, Mu ZHANG, Hongliang HE, Xudong SUN, and Xiaodong LI
DOI: 10.15541/jim20210149 Cite this Article
Xin MAN, Nan WU, Mu ZHANG, Hongliang HE, Xudong SUN, Xiaodong LI. Lu2O3-MgO Nano-powder: Synthesis and Fabrication of Composite Infrared Transparent Ceramics[J]. Journal of Inorganic Materials, 2021, 36(12): 1263 Copy Citation Text show less
References

[1] B LIU W, M KOU H, J LI et al. Preparation and properties of high light transmittance Nd:YAG transparent ceramics. Journal of Inorganic Materials, 23, 1037-1040(2008). http://pub.chinasciencejournal.com/article/getArticleRedirect.action?doiCode=10.3724/SP.J.1077.2008.001037

[2] B HMOA, A YJP, A HNK et al. Effect of powder milling routes on the sinterability and optical properties of transparent Y2O3 ceramics. Journal of the European Ceramic Society, 41, 775-780(2021). https://linkinghub.elsevier.com/retrieve/pii/S095522192030635X

[3] J LI, N JIANG, Q XU S et al. Research progress in infrared transparent MgO-Y2O3nanocomposite ceramics. Journal of The Chinese Ceramic Society, 44, 1302-1314(2016).

[4] N WU, X LI, G LI J et al. Fabrication of Gd2O3-MgO nano- composite optical ceramics with varied crystallographic modifications of Gd2O3 constituent. Journal of the American Ceramic Society, 101, 4887-4891(2018). http://doi.wiley.com/10.1111/jace.2018.101.issue-11

[5] Z LIU, G TOCI, A PIRRI et al. Fabrication and laser operation of Yb:Lu2O3 transparent ceramics from co-precipitated nano-powders. Journal of the American Ceramic Society, 102, 7491-7499(2019). https://onlinelibrary.wiley.com/toc/15512916/102/12

[6] DA PERMIN, S BALABANOV S, V NOVIKOVA A et al. Fabrication of Yb-doped Lu2O3-Y2O3-La2O3 solid solutions transparent ceramics by self-propagating high-temperature synthesis and vacuum sintering. Ceramics International, 45, 522-529(2019). https://linkinghub.elsevier.com/retrieve/pii/S0272884218326749

[7] W YAO, H UEHARA, S TOKITA et al. LD-pumped 2.8 μm Er:Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency. Applied Physics Express, 14(2021).

[9] K MUOTO C, H JORDAN E, M GELL et al. Phase homogeneity in Y2O3-MgO nanocompositessynthesized by thermal decomposition of nitrate precursors with ammonium acetate additions. Journal of the American Ceramic Society, 94, 4207-4217(2011). https://onlinelibrary.wiley.com/doi/10.1111/j.1551-2916.2011.04787.x

[10] K MUOTO C, H JORDAN E, M GELL et al. Effects of precursor chemistry on the structural characteristics of Y2O3-MgO nanocomposites synthesized by a combined Sol-Gel/thermal decomposition route. Journal of the American Ceramic Society, 94, 372-381(2011). http://doi.wiley.com/10.1111/jace.2011.94.issue-2

[11] K MUOTO C, H JORDAN E, M GELL et al. Phase homogeneity in MgO-ZrO2 nanocomposites synthesized by a combined Sol- Gel/thermal decomposition route. Journal of the American Ceramic Society, 93, 3102-3109(2010). http://doi.wiley.com/10.1111/jace.2010.93.issue-10

[12] N WU, D LI X, M ZHANG et al. Synthesis of nanopowders with low agglomeration by elaborating Φ values for producing Gd2O3- MgO nanocomposites with extremely fine grain sizes and high mid-infrared transparency. Journal of the European Ceramic Society, 41, 2898-2907(2020). https://linkinghub.elsevier.com/retrieve/pii/S0955221920309183

[13] T STEFANIK, R GENTILMAN, P HOGAN. Nanocomposite optical ceramics for infrared windows and domes. The International Society for Optical Engineering, 6545, 9(2007).

[14] A KRELL, P BLANK, H MA et al. Transparent sintered corundum with high hardness and strength. Journal of the American Ceramic Society, 86, 12-18(2010). http://blackwell-synergy.com/doi/abs/10.1111/jace.2003.86.issue-1

[15] G GOGLIO, G KAUR, C PINHO S L et al. Glycine-nitrate process for the elaboration of Eu3+-doped Gd2O3bimodal nanoparticles for biomedical applications. European Journal of Inorganic Chemistry, 7, 1243-1253(2015).

[16] K MORITA, N KIM B, H YOSHIDA et al. Spark-plasma- sintering condition optimization for producing transparent MgAl2O4spinel polycrystal. Journal of the American Ceramic Society, 92, 1208-1216(2009). http://blackwell-synergy.com/doi/abs/10.1111/jace.2009.92.issue-6

[18] R APETZ, V BRUGGEN M P B. Transparent alumina: a light-scattering model. Journal of the American Ceramic Society, 86, 480-486(2010). http://blackwell-synergy.com/doi/abs/10.1111/jace.2003.86.issue-3

[19] J PEELEN J G, R METSELAAR. Light scattering by pores in poly-crystalline materials. Journal of Applied Physics, 45, 216-220(1974). http://aip.scitation.org/doi/10.1063/1.1662961

[20] A KRELL, T HUTZLER, J KLIMKE. Transmission physics and consequences for materials selection, manufacturing, and applications. Journal of the European Ceramic Society, 29, 207-221(2009). https://linkinghub.elsevier.com/retrieve/pii/S0955221908001441

[21] C HARRIS D, R CAMBREA L, F JOHNSON L et al. Properties of an infrared-transparent MgO: Y2O3 nanocomposite. Journal of the American Ceramic Society, 96, 3828-3835(2013). https://onlinelibrary.wiley.com/toc/15512916/96/12

[22] O MEDENBACH, D DETTMAR, D SHANNON R et al. Refractive index and optical dispersion of rare earth oxides using a small- prism technique. Journal of Optics A Pure & Applied Optics, 3, 174-177(2001).

[23] J MA H, K JUNG W, Y BAEK C et al. Influence of microstructure control on optical and mechanical properties of infrared transparent Y2O3-MgO nanocomposite. Journal of the European Ceramic Society, 37, 4902-4911(2017). https://linkinghub.elsevier.com/retrieve/pii/S0955221917304004

[24] Q XU S, J LI, Y Li C et al. Infrared-transparent Y2O3-MgO nanocomposites fabricated by the glucose Sol-Gel combustion and hot-pressing technique. Journal of the American Ceramic Society, 98, 2796-2802(2015). https://onlinelibrary.wiley.com/doi/10.1111/jace.13681

Xin MAN, Nan WU, Mu ZHANG, Hongliang HE, Xudong SUN, Xiaodong LI. Lu2O3-MgO Nano-powder: Synthesis and Fabrication of Composite Infrared Transparent Ceramics[J]. Journal of Inorganic Materials, 2021, 36(12): 1263
Download Citation