• Photonics Research
  • Vol. 13, Issue 6, 1691 (2025)
Yuezheng Wang1,2,†, Lu Sun1,2,†, Zhiwenqi An1,2, Zeliang Zhang1,2..., Zhi Zhang3, Nan Zhang1,2, Pengfei Qi1,2, Lie Lin1,2 and Weiwei Liu1,2,*|Show fewer author(s)
Author Affiliations
  • 1Institute of Modern Optics, Eye Institute, Nankai University, Tianjin 300350, China
  • 2Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
  • 3School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
  • show less
    DOI: 10.1364/PRJ.550756 Cite this Article Set citation alerts
    Yuezheng Wang, Lu Sun, Zhiwenqi An, Zeliang Zhang, Zhi Zhang, Nan Zhang, Pengfei Qi, Lie Lin, Weiwei Liu, "Polarization-dependent neutral nitrogen fluorescence induced by long-distance laser filamentation," Photonics Res. 13, 1691 (2025) Copy Citation Text show less
    References

    [1] A. Braun, G. Korn, X. Liu. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett., 20, 73-75(1995).

    [2] S. Xu, J. Bernhardt, M. Sharifi. Intensity clamping during laser filamentation by TW level femtosecond laser in air and argon. Laser Phys., 22, 195-202(2012).

    [3] M. Rodriguez, R. Bourayou, G. Méjean. Intensity clamping of a femtosecond laser pulse in condensed matter. Phys. Rev. E, 69, 036607(2004).

    [4] J. Kasparian, J.-P. Wolf. Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express, 16, 466-493(2008).

    [5] P. Qi, W. Qian, L. Guo. Sensing with femtosecond laser filamentation. Sensors, 22, 7076(2022).

    [6] A. D. Koulouklidis, C. Gollner, V. Shumakova. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat. Commun., 11, 292(2020).

    [7] C. Vozzi, F. Calegari, E. Benedetti. Millijoule-level phase-stabilized few-optical-cycle infrared parametric source. Opt. Lett., 32, 2957-2959(2007).

    [8] J. Ju, J. Liu, C. Wang. Laser-filamentation-induced condensation and snow formation in a cloud chamber. Opt. Lett., 37, 1214-1216(2012).

    [9] J.-P. Wolf. Short-pulse lasers for weather control. Rep. Prog. Phys., 81, 026001(2018).

    [10] H. L. Xu, S. L. Chin. Femtosecond laser filamentation for atmospheric sensing. Sensors, 11, 32-53(2011).

    [11] S. L. Chin, H. L. Xu, Q. Luo. Filamentation ‘remote’ sensing of chemical and biological agents/pollutants using only one femtosecond laser source. Appl. Phys. B, 95, 1-12(2009).

    [12] T.-J. Wang, J.-F. Daigle, J. Ju. Forward lasing action at multiple wavelengths seeded by white light from a femtosecond laser filament in air. Phys. Rev. A, 88, 053429(2013).

    [13] Q. Luo, W. Liu, S. L. Chin. Lasing action in air induced by ultra-fast laser filamentation. Appl. Phys. B, 76, 337-340(2003).

    [14] J. Yao, B. Zeng, H. Xu. High-brightness switchable multiwavelength remote laser in air. Phys. Rev. A, 84, 051802(2011).

    [15] J. Yao, W. Chu, Z. Liu. An anatomy of strong-field ionization-induced air lasing. Appl. Phys. B, 124, 73(2018).

    [16] W. Liu, S. Petit, A. Becker. Intensity clamping of a femtosecond laser pulse in condensed matter. Opt. Commun., 202, 189-197(2002).

    [17] A. Becker, A. D. Bandrauk, S. L. Chin. S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule. Chem. Phys. Lett., 343, 345-350(2001).

    [18] S. Xu, X. Sun, B. Zeng. Simple method of measuring laser peak intensity inside femtosecond laser filament in air. Opt. Express, 20, 299-307(2012).

    [19] S. A. Hosseini, Q. Luo, B. Ferland. Effective length of filaments measurement using backscattered fluorescence from nitrogen molecules. Appl. Phys. B, 77, 697-702(2003).

    [20] J.-F. Daigle, A. Jaroń-Becker, S. Hosseini. Intensity clamping measurement of laser filaments in air at 400 and 800  nm. Phys. Rev. A, 82, 023405(2010).

    [21] S. Rostami, M. Chini, K. Lim. Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments. Sci. Rep., 6, 20363(2016).

    [22] A. Trisorio, C. P. Hauri. Control and characterization of multiple circularly polarized femtosecond filaments in argon. Opt. Lett., 32, 1650-1652(2007).

    [23] H. L. Xu, A. Azarm, J. Bernhardt. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air. Chem. Phys., 360, 171-175(2009).

    [24] B. R. Arnold, S. D. Roberson, P. M. Pellegrino. Excited state dynamics of nitrogen reactive intermediates at the threshold of laser induced filamentation. Chem. Phys., 405, 9-15(2012).

    [25] S. Mitryukovskiy, Y. Liu, P. Ding. Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses. Phys. Rev. Lett., 114, 063003(2015).

    [26] Y. Shi, A. Chen, Y. Jiang. Influence of laser polarization on plasma fluorescence emission during the femtosecond filamentation in air. Opt. Commun., 367, 174-180(2016).

    [27] J. F. Daigle, G. Méjean, W. Liu. Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy. Appl. Phys. B, 87, 749-754(2007).

    [28] B. Shang, P. Qi, J. Guo. Manipulation of long-distance femtosecond laser filamentation: from physical model to acoustic diagnosis. Opt. Laser Technol., 157, 108636(2023).

    [29] P. W. Atkins, R. S. Friedman. Molecular Quantum Mechanics(2011).

    [30] J. Liu, Z. Zhang, B. Shang. Enhancement of multi-filament generation and filament-induced fluorescence by turbulence. Opt. Commun., 517, 128290(2022).

    [31] J. Wu, Z. Wu, T. Chen. Spatial distribution of the fluorescence induced by femtosecond laser filamentation in ambient air. Opt. Laser Technol., 131, 106417(2020).

    [32] S. Li, Y. Jiang, A. Chen. Revisiting the mechanism of nitrogen fluorescence emission induced by femtosecond filament in air. Phys. Plasmas, 24, 033111(2017).

    [33] R. Danylo, X. Zhang, Z. Fan. Formation dynamics of excited neutral nitrogen molecules inside femtosecond laser filaments. Phys. Rev. Lett., 123, 243203(2019).

    [34] W. Zheng, Z. Miao, C. Dai. Formation mechanism of excited neutral nitrogen molecules pumped by intense femtosecond laser pulses. J. Phys. Chem. Lett., 11, 7702-7708(2020).

    [35] M. Zubek. Excitation of the C3Πu state of N2 by electron impact in the near-threshold region. J. Phys. B, 27, 573(1994).

    [36] C. Guo, G. N. Gibson. Ellipticity effects on single and double ionization of diatomic molecules in strong laser fields. Phys. Rev. A, 63, 040701(2001).

    [37] W. Xie, M. Li, S. Luo. Nonadiabaticity-induced ionization time shift in strong-field tunneling ionization. Phys. Rev. A, 100, 023414(2019).

    [38] Y. Itikawa. Cross sections for electron collisions with nitrogen molecules. J. Phys. Chem. Ref. Data, 35, 31-53(2006).

    [39] M. V. Ammosov, N. B. Delone, V. P. Krainov. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. J. Exp. Theor. Phys., 64, 1191(1986).

    [40] D. N. Schimpf, T. Eidam, E. Seise. Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity. Opt. Express, 17, 18774-18781(2009).

    [41] W. Liu, S. L. Chin. Direct measurement of the critical power of femtosecond Ti laser pulse in air. Opt. Express, 13, 5750-5755(2005).

    [42] A. Couairon, A. Mysyrowicz. Femtosecond filamentation in transparent media. Phys. Rep., 441, 47-189(2007).

    [43] S. A. Hosseini, J. Yu, Q. Luo. Multi-parameter characterization of the longitudinal plasma profile of a filament: a comparative study. Appl. Phys. B, 79, 519-523(2004).

    Yuezheng Wang, Lu Sun, Zhiwenqi An, Zeliang Zhang, Zhi Zhang, Nan Zhang, Pengfei Qi, Lie Lin, Weiwei Liu, "Polarization-dependent neutral nitrogen fluorescence induced by long-distance laser filamentation," Photonics Res. 13, 1691 (2025)
    Download Citation