• Photonics Research
  • Vol. 7, Issue 3, 318 (2019)
Wenyao Liang1、*, Zheng Li2, Yu Wang1, Wuhe Chen1, and Zhiyuan Li1
Author Affiliations
  • 1School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
  • 2School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, China
  • show less
    DOI: 10.1364/PRJ.7.000318 Cite this Article Set citation alerts
    Wenyao Liang, Zheng Li, Yu Wang, Wuhe Chen, Zhiyuan Li. All-angle optical switch based on the zero reflection effect of graphene–dielectric hyperbolic metamaterials[J]. Photonics Research, 2019, 7(3): 318 Copy Citation Text show less
    References

    [1] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [2] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 312, 1780-1782(2006).

    [3] Q. Zhao, T. Zhou, T. Wang, W. Liu, J. Liu, T. Yu, Q. Liao, N. Liu. Active control of near-field radiative heat transfer between graphene-covered metamaterials. J. Phys. D, 50, 145101(2017).

    [4] D. R. Smith, D. Schurig. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett., 90, 077405(2003).

    [5] Y. Guo, W. Newman, C. L. Cortes, Z. Jacob. Applications of hyperbolic metamaterial substrates. Adv. OptoElectron., 2012, 452502(2012).

    [6] K. V. Sreekanth, A. De Luca, G. Strangi. Negative refraction in graphene-based hyperbolic metamaterials. Appl. Phys. Lett., 103, 023107(2013).

    [7] J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl. Negative refraction in semiconductor metamaterials. Nat. Mater., 6, 946-950(2007).

    [8] C. Argyropoulos, N. M. Estakhri, F. Monticone, A. Alù. Negative refraction, gain and nonlinear effects in hyperbolic metamaterials. Opt. Express, 21, 15037-15047(2013).

    [9] A. D. Neira, G. A. Wurtz, A. V. Zayats. Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides. Sci. Rep., 5, 17678(2015).

    [10] S. H. Liang, C. H. Jiang, Z. Q. Yang, D. C. Li, W. D. Zhang, T. Mei, D. W. Zhang. Plasmonic slow light waveguide with hyperbolic metamaterials claddings. J. Opt., 20, 065001(2018).

    [11] T. F. Li, V. Nagai, D. H. Gracias, J. B. Khurgin. Limits of imaging with multilayer hyperbolic metamaterials. Opt. Express, 25, 13588-13601(2017).

    [12] D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol., 9, 48-53(2014).

    [13] K. J. Lee, Y. U. Lee, S. J. Kim, P. André. Hyperbolic dispersion dominant regime identified through spontaneous emission variations near metamaterial interfaces. Adv. Mater. Interfaces, 5, 1701629(2018).

    [14] T. A. Morgado, S. I. Maslovski, M. G. Silveirinha. Ultrahigh Casimir interaction torque in nanowire systems. Opt. Express, 21, 14943-14955(2013).

    [15] M. Kim, S. Kim, S. Kim. Optical bistability based on hyperbolic metamaterials. Opt. Express, 26, 11620-11632(2018).

    [16] X. Li, Z. X. Liang, X. H. Liu, X. Y. Jiang, J. Zi. All-angle zero reflection at metamaterial surfaces. Appl. Phys. Lett., 93, 171111(2008).

    [17] W. Li, Z. Liu, X. Zhang, X. Y. Jiang. Switchable hyperbolic metamaterials with magnetic control. Appl. Phys. Lett., 100, 161108(2012).

    [18] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

    [19] G. W. Hanson. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys., 103, 064302(2008).

    [20] A. Vakil, N. Engheta. Transformation optics using graphene. Science, 332, 1291-1294(2011).

    [21] H. Deng, F. Ye, B. A. Malomed, X. Chen, N. C. Panoiu. Optically and electrically tunable Dirac points and Zitterbewegung in graphene-based photonic superlattices. Phys. Rev. B, 91, 201402(2015).

    [22] H. Deng, X. Chen, B. A. Malomed, N. C. Panoiu, F. Ye. Tunability and robustness of Dirac points of photonic nanostructures. IEEE J. Sel. Top. Quantum Electron., 22, 98-106(2016).

    [23] Y. C. Chang, C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, T. B. Norris. Realization of mid-infrared graphene hyperbolic metamaterials. Nat. Commun., 7, 10568(2016).

    [24] T. Gric, O. Hess. Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials. Opt. Express, 25, 11466-11476(2017).

    [25] B. Zhu, G. Ren, S. Zheng, Z. Lin, S. Jian. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt. Express, 21, 17089-17096(2013).

    [26] I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar. Hyperbolic metamaterials based on multilayer graphene structures. Phys. Rev. B, 87, 075416(2013).

    [27] H. G. Liu, P. G. Liu, L. A. Bian, C. X. Liu, Q. H. Zhou, Y. W. Chen. Electrically tunable terahertz metamaterials based on graphene stacks array. Superlattices Microstruct., 112, 470-479(2017).

    [28] B. Janaszek, A. Tyszka-Zawadzka, P. Szczepański. Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands. Opt. Express, 24, 24129-24136(2016).

    [29] M. Shoaei, M. K. Moravvej-Farshi, L. Yousefi. Nanostructured graphene-based hyperbolic metamaterial performing as a wide-angle near infrared electro-optical switch. Appl. Opt., 54, 1206-1211(2015).

    [30] M. A. K. Othman, C. Guclu, F. Capolino. Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. J. Nanophoton., 7, 073089(2013).

    [31] H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon. Topological transitions in metamaterials. Science, 336, 205-209(2012).

    [32] S. Campione, T. S. Luk, S. Liu, M. B. Sinclair. Optical properties of transiently-excited semiconductor hyperbolic metamaterials. Opt. Mater. Express, 5, 2385-2394(2015).

    [33] F. H. Shi, Y. H. Chen, P. Han, P. Tassin. Broadband, spectrally flat, graphene-based terahertz modulators. Small, 11, 6044-6050(2015).

    [34] W. G. Liu, B. Hu, Z. D. Huang, H. Y. Guan, H. T. Li, X. K. Wang, Y. Zhang, H. X. Yin, X. L. Xiong, J. Liu, Y. T. Wang. Graphene-enabled electrically controlled terahertz meta-lens. Photon. Res., 6, 703-708(2018).

    [35] C. Guclu, S. Campione, F. Capolino. Hyperbolic metamaterial as super absorber for scattered fields generated at its surface. Phys. Rev. B, 86, 205130(2012).

    [36] Y. Zhang, Y. Shi, C. H. Liang. Broadband tunable graphene-based metamaterial absorber. Opt. Mater. Express, 6, 3036-3044(2016).

    [37] Y. T. Zhao, B. A. Wu, B. J. Huang, Q. A. Cheng. Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface. Opt. Express, 25, 7161-7169(2017).

    [38] Y. Shi, Y. Zhang. Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray. IEEE Access, 6, 5341-5347(2018).

    [39] Z. Li, W. Y. Liang, W. H. Chen. Switchable hyperbolic metamaterials based on the graphene-dielectric stacking structure and optical switches design. Europhys. Lett., 120, 37001(2017).

    [40] H. N. S. Krishnamoorthy, B. Gholipour, N. I. Zheludev, C. Soci. A non-volatile chalcogenide switchable hyperbolic metamaterial. Adv. Opt. Mater., 6, 1800332(2018).

    [41] M. Shoaei, M. K. Moravvej-Farshi, L. Yousefi. All-optical switching of nonlinear hyperbolic metamaterials in visible and near-infrared regions. J. Opt. Soc. Am. B, 32, 2358-2365(2015).

    [42] J. Qin, H. M. Dong, K. Han, X. F. Wang. Ultrafast dynamic optical properties of graphene. Acta Phys. Sin., 64, 237801(2015).

    [43] V. P. Gusynin, S. G. Sharapov, J. P. Carbotte. Magneto-optical conductivity in graphene. J. Phys. Condens. Matter, 19, 026222(2007).

    [44] M. A. K. Othman, C. Guclu, F. Capolino. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt. Express, 21, 7614-7632(2013).

    Wenyao Liang, Zheng Li, Yu Wang, Wuhe Chen, Zhiyuan Li. All-angle optical switch based on the zero reflection effect of graphene–dielectric hyperbolic metamaterials[J]. Photonics Research, 2019, 7(3): 318
    Download Citation