• Journal of Semiconductors
  • Vol. 44, Issue 9, 091605 (2023)
Man Hoi Wong*
Author Affiliations
  • Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • show less
    DOI: 10.1088/1674-4926/44/9/091605 Cite this Article
    Man Hoi Wong. A landscape of β-Ga2O3 Schottky power diodes[J]. Journal of Semiconductors, 2023, 44(9): 091605 Copy Citation Text show less
    References

    [1] J Y Tsao, S Chowdhury, M A Hollis et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges. Adv Electron Mater, 4, 1600501(2018).

    [2] O Slobodyan, J Flicker, J Dickerson et al. Analysis of the dependence of critical electric field on semiconductor bandgap. J Mater Res, 37, 849(2022).

    [3] M Higashiwaki, G H Jessen. Guest Editorial: The dawn of gallium oxide microelectronics. Appl Phys Lett, 112, 060401(2018).

    [4] K D Chabak, K D Leedy, A J Green et al. Lateral β-Ga2O3 field effect transistors. Semicond Sci Technol, 35, 013002(2020).

    [5] M H Wong, M Higashiwaki. Vertical β-Ga2O3 power transistors: A review. IEEE Trans Electron Devices, 67, 3925(2020).

    [6] N Ma, N Tanen, A Verma et al. Intrinsic electron mobility limits in β-Ga2O3. Appl Phys Lett, 109, 212101(2016).

    [7] S B Reese, T Remo, J Green et al. How much will gallium oxide power electronics cost. Joule, 3, 903(2019).

    [8] K N Heinselman, D Haven, A Zakutayev et al. Projected cost of gallium oxide wafers from edge-defined film-fed crystal growth. Cryst Growth Des, 22, 4854(2022).

    [9] X H Hou, Y N Zou, M F Ding et al. Review of polymorphous Ga2O3 materials and their solar-blind photodetector applications. J Phys D: Appl Phys, 54, 043001(2021).

    [10] J G Zhou, H Chen, K Fu et al. Gallium oxide-based optical nonlinear effects and photonics devices. J Mater Res, 36, 4832(2021).

    [11] H Murakami, K Nomura, K Goto et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 8, 015503(2015).

    [12] Q T Thieu, D Wakimoto, Y Koishikawa et al. Preparation of 2-in.-diameter (001) β-Ga2O3 homoepitaxial wafers by halide vapor phase epitaxy. Jpn J Appl Phys, 56, 110310(2017).

    [13] K Goto, K Konishi, H Murakami et al. Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties. Thin Solid Films, 666, 182(2018).

    [14] J H Leach, K Udwary, J Rumsey et al. Halide vapor phase epitaxial growth of β-Ga2O3 and α-Ga2O3 films. APL Mater, 7, 022504(2019).

    [15] K Goto, H Murakami, A Kuramata et al. Effect of substrate orientation on homoepitaxial growth of β-Ga2O3 by halide vapor phase epitaxy. Appl Phys Lett, 120, 102102(2022).

    [16] A Kuramata, K Koshi, S Watanabe et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys, 55, 1202A2(2016).

    [17] A Kyrtsos, M Matsubara, E Bellotti. On the feasibility of p-type Ga2O3. Appl Phys Lett, 112, 032108(2018).

    [18] T Gake, Y Kumagai, F Oba. First-principles study of self-trapped holes and acceptor impurities in Ga2O3 polymorphs. Phys Rev Materials, 3, 044603(2019).

    [19] J B Varley, A Janotti, C Franchini et al. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Phys Rev B, 85, 081109(2012).

    [20] A S Grove, O Leistiko, W W Hooper. Effect of surface fields on the breakdown voltage of planar silicon p-n junctions. IEEE Trans Electron Devices, 14, 157(1967).

    [21] K Konishi, K Goto, H Murakami et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 110, 103506(2017).

    [22] Z Z Hu, H Zhou, Q Feng et al. Field-plated lateral β-Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2. IEEE Electron Device Lett, 39, 1564(2018).

    [23] J C Yang, F Ren, M Tadjer et al. 2300V reverse breakdown voltage Ga2O3 Schottky rectifiers. ECS J Solid State Sci Technol, 7, Q92(2018).

    [24] Y T Chen, J C Yang, F Ren et al. Implementation of a 900V switching circuit for high breakdown voltage β-Ga2O3 Schottky diodes. ECS J Solid State Sci Technol, 8, Q3229(2019).

    [25] S Kumar, H Murakami, Y Kumagai et al. Vertical β-Ga2O3 Schottky barrier diodes with trench staircase field plate. Appl Phys Express, 15, 054001(2022).

    [26] J C Yang, F Ren, M Tadjer et al. Ga2O3 Schottky rectifiers with 1 ampere forward current, 650 V reverse breakdown and 26.5 MW•cm-2 figure-of-merit. AIP Adv, 8, 055026(2018).

    [27] J C Yang, F Ren, S J Pearton et al. Vertical geometry, 2-A forward current Ga2O3 Schottky rectifiers on bulk Ga2O3 substrates. IEEE Trans Electron Devices, 65, 2790(2018).

    [28] J C Yang, M H Xian, P Carey et al. Vertical geometry 33.2 A, 4.8 MW cm−2 Ga2O3 field-plated Schottky rectifier arrays. Appl Phys Lett, 114, 232106(2019).

    [29] J C Yang, C Fares, R Elhassani et al. Reverse breakdown in large area, field-plated, vertical β-Ga2O3 rectifiers. ECS J Solid State Sci Technol, 8, Q3159(2019).

    [30] M Ji, N R Taylor, I Kravchenko et al. Demonstration of large-size vertical Ga2O3 Schottky barrier diodes. IEEE Trans Power Electron, 36, 41(2020).

    [31] R Sharma, M H Xian, C Fares et al. Effect of probe geometry during measurement of >100 A Ga2O3 vertical rectifiers. J Vac Sci Technol A, 39, 013406(2021).

    [32] M Kasu, K Hanada, T Moribayashi et al. Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes. Jpn J Appl Phys, 55, 1202BB(2016).

    [33] T Oshima, A Hashiguchi, T Moribayashi et al. Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects. Jpn J Appl Phys, 56, 086501(2017).

    [34] S Sdoeung, K Sasaki, K Kawasaki et al. Origin of reverse leakage current path in edge-defined film-fed growth (001) β-Ga2O3 Schottky barrier diodes observed by high-sensitive emission microscopy. Appl Phys Lett, 117, 022106(2020).

    [35] S Sdoeung, K Sasaki, K Kawasaki et al. Polycrystalline defects—Origin of leakage current—In halide vapor phase epitaxial (001) β-Ga2O3 Schottky barrier diodes identified via ultrahigh sensitive emission microscopy and synchrotron X-ray topography. Appl Phys Express, 14, 036502(2021).

    [36] Z B Xia, C Y Wang, N K Kalarickal et al. Design of transistors using high-permittivity materials. IEEE Trans Electron Devices, 66, 896(2019).

    [37] H-S Lee, N K Kalarickal, M W Rahman et al. High-permittivity dielectric edge termination for vertical high voltage devices. J Comput Electron, 19, 1538(2020).

    [38] N K Kalarickal, Z X Feng, A F M A U Bhuiyan et al. Electrostatic engineering using extreme permittivity materials for ultra-wide bandgap semiconductor transistors. IEEE Trans Electron Devices, 68, 29(2021).

    [39] Z B Xia, H Chandrasekar, W Moore et al. Metal/BaTiO3/β-Ga2O3 dielectric heterojunction diode with 5.7 MV/cm breakdown field. Appl Phys Lett, 115, 252104(2019).

    [40] S Roy, A Bhattacharyya, P Ranga et al. High-k oxide field-plated vertical (001) β-Ga2O3 Schottky barrier diode with baliga’s figure of merit over 1 GW/cm2. IEEE Electron Device Lett, 42, 1140(2021).

    [41] D Saraswat, W S Li, K Nomoto et al. Very high parallel-plane surface electric field of 4.3 MV/cm in Ga2O3 Schottky barrier diodes with PtOx contacts, 1(2020).

    [42] E Farzana, F Alema, W Y Ho et al. Vertical β-Ga2O3 field plate Schottky barrier diode from metal-organic chemical vapor deposition. Appl Phys Lett, 118, 162109(2021).

    [43] C Joishi, S Rafique, Z B Xia et al. Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes. Appl Phys Express, 11, 031101(2018).

    [44] N Allen, M Xiao, X D Yan et al. Vertical Ga2O3 Schottky barrier diodes with small-angle beveled field plates: A Baliga’s figure-of-merit of 0.6 GW/cm2. IEEE Electron Device Lett, 40, 1399(2019).

    [45] Y N Zhang, J C Zhang, Z Q Feng et al. Impact of implanted edge termination on vertical β-Ga2O3 Schottky barrier diodes under OFF-state stressing. IEEE Trans Electron Devices, 67, 3948(2020).

    [46] X Lu, X Zhang, H X Jiang et al. Vertical β-Ga2O3 Schottky barrier diodes with enhanced breakdown voltage and high switching performance. Phys Status Solidi A, 217, 1900497(2020).

    [47] Y Y Gao, A Li, Q Feng et al. High-voltage β-Ga2O3 Schottky diode with argon-implanted edge termination. Nanoscale Res Lett, 14, 8(2019).

    [48] H Zhou, Q L Yan, J C Zhang et al. High-performance vertical β-Ga2O3 Schottky barrier diode with implanted edge termination. IEEE Electron Device Lett, 40, 1788(2019).

    [49] X Y Xia, M H Xian, C Fares et al. Nitrogen ion-implanted resistive regions for edge termination of vertical Ga2O3 rectifiers. J Vac Sci Technol A, 39, 063405(2021).

    [50] C-H Lin, Y Yuda, M H Wong et al. Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation. IEEE Electron Device Lett, 40, 1487(2019).

    [51] P F Dong, J C Zhang, Q L Yan et al. 6 kV/3.4 mΩ·cm2 vertical β-Ga2O3 Schottky barrier diode with BV2/Ron,sp performance exceeding 1-D unipolar limit of GaN and SiC. IEEE Electron Device Lett, 43, 765(2022).

    [52] T Oshima, K Kaminaga, A Mukai et al. Formation of semi-insulating layers on semiconducting β-Ga2O3 single crystals by thermal oxidation. Jpn J Appl Phys, 52, 051101(2013).

    [53] S K Swain, M H Weber, J Jesenovec et al. Compensation of shallow donors by gallium vacancies in monoclinic β-Ga2O3. Phys Rev Applied, 15, 054010(2021).

    [54] Y G Wang, Y J Lv, S B Long et al. High-voltage (2¯01) β-Ga2O3 vertical Schottky barrier diode with thermally-oxidized termination. IEEE Electron Device Lett, 41, 131(2020).

    [55] Y G Wang, Y J Lv, S B Dun et al. High performance β-Ga2O3 vertical Schottky barrier diodes., 224(2020).

    [56] Y X Wei, X R Luo, Y G Wang et al. Experimental study on static and dynamic characteristics of Ga2O3 Schottky barrier diodes with compound termination. IEEE Trans Power Electron, 36, 10976(2021).

    [57] Z Z Hu, Y J Lv, C Y Zhao et al. Beveled fluoride plasma treatment for vertical β-Ga2O3 Schottky barrier diode with high reverse blocking voltage and low turn-on voltage. IEEE Electron Device Lett, 41, 441(2020).

    [58] J C Yang, C Fares, F Ren et al. Effects of fluorine incorporation into β-Ga2O3. J Appl Phys, 123, 441(2018).

    [59] Q L Yan, H H Gong, H Zhou et al. Low density of interface trap states and temperature dependence study of Ga2O3 Schottky barrier diode with p-NiOx termination. Appl Phys Lett, 120, 092106(2022).

    [60] S Roy, A Bhattacharyya, S Krishnamoorthy. Design of a β-Ga2O3 Schottky barrier diode with p-type III-nitride guard ring for enhanced breakdown. IEEE Trans Electron Devices, 67, 4842(2020).

    [61] B Y Wang, M Xiao, J Spencer et al. 2.5 kV vertical Ga2O3 Schottky rectifier with graded junction termination extension. IEEE Electron Device Lett, 44, 221(2023).

    [62] W B Hao, F H Wu, W S Li et al. Improved vertical β-Ga2O3 Schottky barrier diodes with conductivity-modulated p-NiO junction termination extension. IEEE Trans Electron Devices, 70, 2129(2023).

    [63] H H Gong, X X Yu, Y Xu et al. β-Ga2O3 vertical heterojunction barrier Schottky diodes terminated with p-NiO field limiting rings. Appl Phys Lett, 118, 202102(2021).

    [64] Z Hu, C Zhao, Q Feng et al. The investigation of β-Ga2O3 Schottky diode with floating field ring termination and the interface states. ECS J Solid State Sci Technol, 9, 025001(2020).

    [65] R Sharma, M H Xian, M E Law et al. Design and implementation of floating field ring edge termination on vertical geometry β-Ga2O3 rectifiers. J Vac Sci Technol A, 38, 063414(2020).

    [66] E H Rhoderick. Metal-semiconductor contacts. IEE Proceedings I (Solid-State and Electron Devices), 129, 1(1982).

    [67] W S Li, D Saraswat, Y Y Long et al. Near-ideal reverse leakage current and practical maximum electric field in β-Ga2O3 Schottky barrier diodes. Appl Phys Lett, 116, 192101(2020).

    [68] B M Wilamowski. Schottky diodes with high breakdown voltages. Solid State Electron, 26, 491(1983).

    [69] B J Baliga. The pinch rectifier: A low-forward-drop high-speed power diode. IEEE Electron Device Lett, 5, 194(1984).

    [70] B J Baliga. Analysis of a high-voltage merged p-i-n/Schottky (MPS) rectifier. IEEE Electron Device Lett, 8, 407(1987).

    [71] K Sasaki, Q T Thieu, D Wakimoto et al. First demonstration of Ga2O3 junction barrier Schottky diodes, WE.E1.7(2017).

    [72] K Sasaki, S Yamakoshi, A Kuramata. Gallium-oxide trench-type devices. Proc SPIE, 10919, 1091913(2019).

    [73] Q L Yan, H H Gong, J C Zhang et al. β-Ga2O3 hetero-junction barrier Schottky diode with reverse leakage current modulation and BV2/Ron,sp value of 0.93 GW/cm2. Appl Phys Lett, 118, 122102(2021).

    [74] Y J Lv, Y G Wang, X C Fu et al. Demonstration of β-Ga2O3 junction barrier Schottky diodes with a Baliga’s figure of merit of 0.85 GW/cm2 or a 5A/700 V handling capabilities. IEEE Trans Power Electron, 36, 6179(2021).

    [75] K Sasaki, D Wakimoto, Q T Thieu et al. First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes. IEEE Electron Device Lett, 38, 783(2017).

    [76] A Takatsuka, K Sasaki, D Wakimoto et al. Fast recovery performance of β-Ga2O3 trench MOS Schottky barrier diodes, 1(2018).

    [77] F Otsuka, H Miyamoto, A Takatsuka et al. Large-size (1.7 × 1.7 mm2β-Ga2O3 field-plated trench MOS-type Schottky barrier diodes with 1.2 kV breakdown voltage and 109 high on/off current ratio. Appl Phys Express, 15, 016501(2022).

    [78] W S Li, K Nomoto, Z Y Hu et al. 1.5 kV vertical Ga2O3 trench-MIS Schottky barrier diodes, 1(2018).

    [79] W S Li, Z Y Hu, K Nomoto et al. 1230 V β-Ga2O3 trench Schottky barrier diodes with an ultra-low leakage current of 1 μA/cm2. Appl Phys Lett, 113, 202101(2018).

    [80] W S Li, Z Y Hu, K Nomoto et al. 2.44 kV Ga2O3 vertical trench Schottky barrier diodes with very low reverse leakage current, 8.5. 1(2018).

    [81] W S Li, K Nomoto, Z Y Hu et al. Field-plated Ga2O3 trench Schottky barrier diodes with a record high figure-of-merit of 0.78 GW/cm2, 1(2019).

    [82] W S Li, K Nomoto, Z Y Hu et al. Field-plated Ga2O3 trench Schottky barrier diodes with a BV2/Ron,sp of up to 0.95 GW/cm2. IEEE Electron Device Lett, 41, 107(2020).

    [83] W S Li, K Nomoto, Z Y Hu et al. Guiding principles for trench Schottky barrier diodes based on ultrawide bandgap semiconductors: A case study in Ga2O3. IEEE Trans Electron Devices, 67, 3938(2020).

    [84] X A Huang, F Liao, L Li et al. 3.4 kV breakdown voltage Ga2O3 trench Schottky diode with optimized trench corner radius. ECS J Solid State Sci Technol, 9, 045012(2020).

    [85] W S Li, K Nomoto, Z Y Hu et al. Fin-channel orientation dependence of forward conduction in kV-class Ga2O3 trench Schottky barrier diodes. Appl Phys Express, 12, 061007(2019).

    [86] W S Li, K Nomoto, Z Y Hu et al. ON-resistance of Ga2O3 trench-MOS Schottky barrier diodes: Role of sidewall interface trapping. IEEE Trans Electron Devices, 68, 2420(2021).

    [87] C Fares, F Ren, S J Pearton. Temperature-dependent electrical characteristics of β-Ga2O3 diodes with W Schottky contacts up to 500 °C. ECS J Solid State Sci Technol, 8, Q3007(2018).

    [88] C Hou, K R York, R A Makin et al. High temperature (500 °C) operating limits of oxidized platinum group metal (PtOx, IrOx, PdOx, RuOx) Schottky contacts on β-Ga2O3. Appl Phys Lett, 117, 203502(2020).

    [89] H H Gong, F Zhou, X X Yu et al. 70-μm-body Ga2O3 Schottky barrier diode with 1.48 K/W thermal resistance, 59 A surge current and 98.9% conversion efficiency. IEEE Electron Device Lett, 43, 773(2022).

    [90] M Xiao, B Y Wang, J C Liu et al. Packaged Ga2O3 Schottky rectifiers with over 60-A surge current capability. IEEE Trans Power Electron, 36, 8565(2021).

    [91] C Buttay, H Y Wong, B Y Wang et al. Surge current capability of ultra-wide-bandgap Ga2O3 Schottky diodes. Microelectron Reliab, 114, 113743(2020).

    [92] Z A Jian, S Mohanty, E Ahmadi. Temperature-dependent current-voltage characteristics of β-Ga2O3 trench Schottky barrier diodes. Appl Phys Lett, 116, 152104(2020).

    [93] F Wilhelmi, S Kunori, K Sasaki et al. Packaged β-Ga2O3 trench MOS Schottky diode with nearly ideal junction properties. IEEE Trans Power Electron, 37, 3737(2022).

    [94] A T Neal, S Mou, R Lopez et al. Incomplete ionization of a 110 meV unintentional donor in β-Ga2O3 and its effect on power devices. Sci Rep, 7, 13218(2017).

    [95] F Zhou, H H Gong, M Xiao et al. An avalanche-and-surge robust ultrawide-bandgap heterojunction for power electronics. Nat Commun, 14, 4459(2023).

    [96] C L Wang, H H Gong, W N Lei et al. Demonstration of the p-NiOx/n-Ga2O3 heterojunction gate FETs and diodes with BV2/Ron,sp figures of merit of 0.39 GW/cm2 and 1.38 GW/cm2. IEEE Electron Device Lett, 42, 485(2021).

    [97] F Zhou, H H Gong, Z P Wang et al. Over 1.8 GW/cm2 beveled-mesa NiO/β-Ga2O3 heterojunction diode with 800 V/10 A nanosecond switching capability. Appl Phys Lett, 119, 262103(2021).

    [98] W B Hao, Q M He, X Z Zhou et al. 2.6 kV NiO/Ga2O3 heterojunction diode with superior high-temperature voltage blocking capability, 105(2022).

    [99] J C Zhang, P F Dong, K Dang et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes. Nat Commun, 13, 3900(2022).

    [100] M Xiao, B Y Wang, J Spencer et al. NiO junction termination extension for high-voltage (>3 kV) Ga2O3 devices. Appl Phys Lett, 122, 183501(2023).