• Journal of Infrared and Millimeter Waves
  • Vol. 32, Issue 5, 462 (2013)
HUANG Chang-Chun1、*, LI Yun-Mei1, WANG Qiao1, LV Heng1, and SUN De-Yong2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3724/sp.j.1010.2013.00462 Cite this Article
    HUANG Chang-Chun, LI Yun-Mei, WANG Qiao, LV Heng, SUN De-Yong. Suspended particle matter and chlorophyll-a universal bio-optical retrieval model[J]. Journal of Infrared and Millimeter Waves, 2013, 32(5): 462 Copy Citation Text show less
    References

    [1] Binding C E, Bowers D G , Mitchelson-Jacob E G. An algorithm for the retrieval of suspended sediment concentrations in the Irish sea from SeaWiFS ocean colour satellite imagery [J]. International Journal of Remote Sensing, 2003, 24(19): 3791-3806.

    [2] Verdin J P, Monitoring water quality in a large western reservoir with Landsat imagery[J]. Photogrammetric Engineering & Remote Sensing, 1985, 51:343-353.

    [3] Hrm P , Vepslinen J, Hannonen T, et al Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland[J].The Science of Total Environment, 2001, 268(1-3), 107-121.

    [4] Jiao H B , Zha Y , Gao J , et al., Estimation of chlorophyll-a concentration in Lake Tai, China using in situ hyperspectral data[J].International Journal of Remote Sensing, 2006, 27(19): 4267-4276.

    [5] Gons H J. Optical teledetection of chlorophyll a in turbid inland waters[J].Environment Science and Technology, 1999, 33(7): 1127-1132.

    [6] Koponen S, Pulliainen J, Servomaa H, et al. Analysis on the feasibility of multi-source remote sensing observations for chl-a monitoring[J].The Science of the Total Environment, 2001, 268 (1– 3), 95-106.

    [7] Fraser R N. Hyper-spectral remote sensing of turbidity and chlorophyll a among Nebraska Sand Hills lakes[J]. International Journal of Remote Sensing, 1998, 19(8): 1579-1589.

    [8] Sun D Y, Li Y M, Wang Q. A unified model or remotely estimating chlorophyll a in Lake Taihu, China, based on SVM and in situ hyperspectral [J].IEEE Transactions on geosciences and remote sensing .2009, 47(8):2957-2965.

    [11] Gitelson A A. The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration[J].International Journal of Remote Sensing, 1992, 13: 3367-3373.

    [14] Dall’Olmo G, Gitelson A. Effect of bio-optical parameter variability on the remote estimation of chlorophyll a concentration in turbid productive waters: experimental results[J].Applied Optics, 2005, 44(3): 412-422.

    [15] Gitelson A A, Schalles J F, Hladik C M. Remote chlorophyll-retrieval in turbid, productive estuaries: Cheapeake Bay case study[J].Remote Sensing of Environment, 2007, 109: 464-472.

    [17] Chengfeng Le, Yunmei Li, Yong Zha, et al. A four-band semi-analytical model for estimation chlorophyll a in highly turbid lakes: The case of Taihu Lake, China[J].Remote Sensing of Environment, 113(2009): 1175-1182.

    [18] Le Chengfeng, Li Yunmei, Zha Yong, et al. Remote estimation of chlorophyll a in optically complex waters based on optical classification[J].Remote Sensing of Environment, 2011, 115(2): 725-738.

    [19] Lee Z P , Carder K L , Robert A A, Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters[J].Applied Optics, 2002, 41(27):5755-5772.

    [20] Hoge F E, Wright C W. Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: A preliminary algorithm[J].Applied Optics, 1999, 38: 495-504.

    [21] Maritorena S, Siegel D A. Optimization of a semianalytical ocean color model for global-scale applications[J]. Applied Optics, 2002, 41: 2705-2714.

    [24] ZhongPing Lee, Yu-Hwan Ahn, Curtis Mobley, et al. Removal of surface-reflected light for themeasurement of remote-sensing reflectance from an above-surface platform[J]. Optics Express, 2010, 18(25):26314-26324.

    [25] Pope R , Fry E. Absorption spectrum (380-700 nm) of pure waters: II. Integrating cavity measurements[J].Applied Optics , 1997, 710-8723.

    [26] Goldberg D E. Genetic algorithms in search, optimization and machine learning[M].Reading, MA: Addison-Wesley, 1989.

    [27] Davis L . Handbook of genetic algorithms[M].New York: Van Nostrand-Reinhold, 1991.

    [28] Whitley D. A Genetic Algorithm Tutorial. Computer Science Department[M].Fort Collins, Colorado State University, 1993.

    [29] Zhan H G , Lee Z P. Retrieval of water optical properties for optically deep waters using genetic algorithms[J].IEEE Geoscience and Remote Sensing, 2003, 41: 1123-1128.

    [30] Chang C H, C C Liu. Integrating semianalytical and genetic algorithms to retrieve the constituents of water bodies from remote sensing of ocean color[J].Optics Express, 2007, 15(2): 252-265.Ahn Y H , Bricaud A , Morel A. Light backscattering efficiency and related properties of some phytoplankters [J]. Deep-Sea Research, 1992, 39: 1835-1855.

    [31] Binding C E , Bowers D G , Mitchelson-Jacob E G. Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters; the impact of variable particle scattering properties [J].Remote Sensing of Environment , 2005, 94: 373-383.

    [32] Dekker, A. G., Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing [D].Ph.D Thesis in Amsterdam, Netherlands: Vrije University, 1993, 1-240.

    [34] Ritchie J C, CM. Cooper, and J. Yongqing, Using Landsat multispectral scanner data to estimate suspended sediments in Moon Lake, Mississippi[J]. Remote Sensing of Environment, 1987a, 23:65-81.

    [35] Ritchie J C, Cooper, CM, Comparison of Landsat MSS pixel array sizes for estimating water quality[J]. Photogrammetric Engineering & Remote Sensing, 1987b, 53:1549-1553.

    [36] Vincent R K , Qin, X. M., McKay, R. M., et al. Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie[J].Remote Sensing of Environment, 2004, 89(3): 381-392.

    [41] Schalles, J., Yacobi, Y., Remote detection and seasonal patterns of phycocyanin, carotenoid and chlorophyll pigments in eutrophic waters[J].Archive Hydrobiological Special Issues Advance Limnological, 2000, 55, 153 168.

    [44] Simis, S. G. H., Peters, S. W. M., Gons, H. J., Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water[J]. Limmolography and Oceanography, 2005, 50(1): 237-245.

    [45] Simis, S. G. H., Ruiz-Verdú, A., Domíngurz-Gómez, J. A., et al. Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass[J].Remote Sensing of Environment, 2007, 106:414-427.

    [46] Hunter, P.D., Tyler, A.N., Carvalho, L., Codd, G.A. and Maberly, S.C., Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes[J].Remote Sensing of Environment, 2010, 114 (11), pp. 2705-2718.

    [47] Lee Z P , Carder, K. L., Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization[J].Applied Optics, 1999, 38: 3831-3843.

    [48] Austin, R. W., Inherent spectral radiance signatures of the ocean surface. Ocean Color Analysis. S. W. Duntley. San Diego, Scripps Inst[J]. Oceanography, 1974, 74(10): 1-20.

    [49] Gordon, H. R., Brown, O. B., A semianalytic radiance model of ocean color[J]. Journal of Geophysical Research, 1988, 93(D3): 10909-10924.

    [50] Roesler C S , M. J. Perry. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance[J]. Journal of Geophysical Research, 1995, 100: 13279-13294.

    [51] Garver S A, Siegel D . Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea[J]. Journal of Geophysical Research, 1997, 102: 18607-18625.

    [52] Zhang X , Hu L. Estimating scattering of pure water from density fluctuation of the refractive index[J].Optics Express, 2009, 671-1678.

    [53] Stramski D , S awomir B , Flatau W J. Optical properties of Asian mineral dust suspended in seawater[J]. Limmolography and Oceanography, 2004, 49(3), 749-755.

    [55] Wang P , Boss E , Uncertainties of inherent optical properties obtained from semi-analytical inversions of ocean color[J].Applied Optics, 2005, 44(19): 4074-4085.

    [56] Salama, M. S , Dekker, A , . Deriving inherent optical properties and associated inversion-uncertainties in the Dutch Lakes. Hydrol[J].Earth System Science, 2009, 13: 1113-1121.

    [57] Schmitt, L. M. Theory of genetic algorithms II: models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness function under scaling [J].Theoretical Computer Science, 2004, 310: 181-231.

    CLP Journals

    [1] Guo Yulong, Wang Yongbo, Li Yunmei, Wang Qiao, Zhu Li, Lü Heng. Research of Multi-Source Water Remote Image Fusion Algorithm Based on Bio-Optical Model[J]. Acta Optica Sinica, 2015, 35(4): 410001

    HUANG Chang-Chun, LI Yun-Mei, WANG Qiao, LV Heng, SUN De-Yong. Suspended particle matter and chlorophyll-a universal bio-optical retrieval model[J]. Journal of Infrared and Millimeter Waves, 2013, 32(5): 462
    Download Citation