• Laser & Optoelectronics Progress
  • Vol. 59, Issue 12, 1215012 (2022)
Wenfeng Li and Yannan Yang*
Author Affiliations
  • College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, Jiangsu , China
  • show less
    DOI: 10.3788/LOP202259.1215012 Cite this Article Set citation alerts
    Wenfeng Li, Yannan Yang. Laser Remote Charging Recognition Algorithm for Unmanned Aerial Vehicle Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1215012 Copy Citation Text show less
    References

    [1] Ouyang J, Che Y L, Xu J et al. Throughput maximization for laser-powered UAV wireless communication systems[C], 17896496(2018).

    [2] Zhao M, Shi Q, Zhao M. Efficiency maximization for UAV-enabled mobile relaying systems with laser charging[J]. IEEE Transactions on Wireless Communications, 19, 3257(2020).

    [3] He T, Yang S H, Zhang H Y et al. Experiment of space laser energy transmission and conversion with high efficiency[J]. Chinese Journal of Lasers, 40, 0317001(2013).

    [4] Becker D E, Chiang R, Keys C C et al. Photovoltaic-concentrator based power beaming for space elevator application[C], 1230, 271-281(2010).

    [5] Zhang W G, Guo W, Zhang C W et al. An improved method for spot position detection of a laser tracking and positioning system based on a four-quadrant detector[J]. Sensors, 19, 4722(2019).

    [6] Wang C, Zhu L, Wang D et al. Horizontal relative posture recognition based on binocular camera[C], 5566-5571(2018).

    [7] Bao W, Zhang C W, Xiao B X et al. Self-localization of mobile robot based on binocular camera and unscented Kalman filter[C], 277-281(2007).

    [8] Xu Y N, Dong Y, Li J Y et al. Research on target tracking algorithm based on parallel binocular camera[C], 1483-1486(2019).

    [9] Guo R H, Zhang L, Yang Y et al. X-ray image controlled knife detection and recognition based on improved SSD[J]. Laser & Optoelectronics Progress, 58, 040401(2021).

    [10] Miao Z, Zhang Y, Chen R M et al. Method for fast detection of infrared targets based on key points[J]. Acta Optica Sinica, 40, 2312006(2020).

    [11] Wu J L, Guo Z H, Chen X F et al. Three-dimensional measurement method of light field imaging based on deep learning[J]. Chinese Journal of Lasers, 47, 1204005(2020).

    [12] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).

    [13] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [14] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C], 6517-6525(2017).

    [15] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767

    [16] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [17] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).

    [18] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016, 9905, 21-37(2016).

    [19] Han K, Wang Y H, Tian Q et al. GhostNet: more features from cheap operations[C], 1577-1586(2020).

    [20] Everingham M, van Gool L, Williams C K I et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 88, 303-338(2010).

    Wenfeng Li, Yannan Yang. Laser Remote Charging Recognition Algorithm for Unmanned Aerial Vehicle Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1215012
    Download Citation