• Journal of Inorganic Materials
  • Vol. 37, Issue 2, 209 (2022)
Xunuo LOU, Houquan DENG, Shuang LI, Qingtang ZHANG, Wenjie XIONG, and Guodong TANG
Author Affiliations
  • School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    DOI: 10.15541/jim20200738 Cite this Article
    Xunuo LOU, Houquan DENG, Shuang LI, Qingtang ZHANG, Wenjie XIONG, Guodong TANG. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics[J]. Journal of Inorganic Materials, 2022, 37(2): 209 Copy Citation Text show less
    References

    [1] D TANG G, W WEI, J ZHANG et al. Realizing high figure of merit in phase-separated polycrystalline Sn1-xPbxSe. Journal of the American Chemical Society, 138, 13647-13654(2016).

    [2] W WEI, C CHANG, T YANG et al. Achieving high thermoelectric figure of merit in polycrystalline SnSe via introducing Sn vacancies. Journal of the American Chemical Society, 140, 499-505(2018).

    [3] Z PEI Y, A LALONDE, S IWANAGA et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environment Science, 4, 2085-2089(2011).

    [4] N LIMBU, M RAM, H JOSHI et al. Enhanced electronic and thermoelectric properties of p-type doped filled skutterudites RFe4Sb12(R=Pr, Nd). Journal of Applied Physics, 128, 145104(2020).

    [5] H HAN S, Z ZHOU Z, Y SHENG C et al. High thermoelectric performance of half-Heusler compound BiBaK with intrinsically low lattice thermal conductivity. Journal of Physics-Condensed Matter, 32, 425704(2020).

    [6] N LUU S D, T PARASHCHUK, A KOSONOWSKI et al. Structural and thermoelectric properties of solid-liquid In4Se3-In composite. Journal of Electronic Materials, 48, 5418-5427(2020).

    [7] W XIE, S POPULOH, K GALAZKA et al. Thermoelectric study of crossroads material MnTe via sulfur doping. Journal of Applied Physics, 115, 103707(2014).

    [8] X SHE, X SU, H XIE et al. Ultrafast synthesis and thermoelectric properties of Mn1+xTe compounds. ACS Applied Materials & Interfaces, 10, 25519-25528(2018).

    [9] B ZHANG L, L QI H, L GAO J et al. Thermoelectric properties of Mn1+xTe-based compounds densified using high-pressure sintering. Journal of Electronic Materials, 46, 2894-2899(2016).

    [10] Y REN, Q JIANG, J YANG et al. Enhanced thermoelectric performance of MnTe via Cu doping with optimized carrier concentration. Journal of Materiomics, 2, 172-178(2016).

    [11] Q DENG H, N LOU X, Q LU W et al. High-performance eco-friendly MnTe thermoelectrics through introducing SnTe nanocrystals and manipulating band structure. Nano Energy, 81, 105649(2021).

    [12] S LI, N LOU X, T LI X et al. Realization of high thermoelectric performance in polycrystalline tin selenide through Schottky vacancies and endotaxial nanostructuring. Chemistry of Materials, 32, 9761-9770(2020).

    [13] J DONG, F WU C, J PEI et al. Lead-free MnTe mid-temperature thermoelectric materials: facile synthesis, p-type doping and transport properties. Journal of Materials Chemistry C, 6, 4265-4272(2018).

    [14] A BANIK, T GHOSH, R ARORA et al. Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn1-xGexTe. Energy & Environment Science, 12, 589-595(2019).

    [15] J TAN G, Y SHI F, Q HAO S et al. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. Journal of The American Chemical Society, 137, 11507-11516(2015).

    [17] Y CHENG, J YANG, Q JIANG et al. CuCrSe2 ternary chromium chalcogenide: facile fabrication, doping and thermoelectric properties. Journal of The American Ceramic Society, 98, 3975-3980(2015).

    [18] W LU, S LI, R XU et al. Boosting thermoelectric performance of SnSe via tailoring band structure, suppressing bipolar thermal conductivity, and introducing large mass fluctuation. ACS Applied Materials & Interfaces, 11, 45133-45141(2019).

    [19] J XIN, J YANG, Q JIANG et al. Reinforced bond covalency and multiscale hierarchical architecture to high performance eco-friendly MnTe-based thermoelectric materials. Nano Energy, 57, 703-710(2019).

    [20] A BASIT, J YANG, Q JIANG et al. Effect of Sn doping on thermoelectric properties of p-type manganese telluride. Journal of Alloys and Compounds, 777, 968-973(2019).

    [21] Y REN, Q JIANG, J YANG et al. Synergistic effect by Na doping and S substitution for high thermoelectric performance of p-type MnTe. Journal of Materials Chemistry C, 5, 5076-5082(2017).

    [22] Y LUO, J YANG, Q JIANG et al. Large enhancement of thermoelectric performance of CuInTe2via a synergistic strategy of point defects and microstructure engineering. Nano Energy, 18, 37-46(2015).

    Xunuo LOU, Houquan DENG, Shuang LI, Qingtang ZHANG, Wenjie XIONG, Guodong TANG. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics[J]. Journal of Inorganic Materials, 2022, 37(2): 209
    Download Citation