• Chinese Journal of Lasers
  • Vol. 51, Issue 16, 1602402 (2024)
Xue Yang1、2, Chengjuan Yang1、2、*, Hao Tong3、4, Huimin Qi1、2, Yao Yao3、4, and Zhen Yang1、2
Author Affiliations
  • 1School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Mechanism Theory and Equipment Design, Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
  • 3State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
  • 4Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipment and Control, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/CJL231182 Cite this Article Set citation alerts
    Xue Yang, Chengjuan Yang, Hao Tong, Huimin Qi, Yao Yao, Zhen Yang. Theoretical Analysis and Experimental Research on Tubular Electrode‑Coupled Laser and Electrochemical Hybrid Machining[J]. Chinese Journal of Lasers, 2024, 51(16): 1602402 Copy Citation Text show less
    References

    [1] Yin Z, Zhang P, Yu D G et al. Research progress on ultrasonic vibration-assisted EDM micro-hole machining[J]. Aeronautical Manufacturing Technology, 65, 53-63(2022).

    [2] Khatri B C, Rathod P, Valaki J B. Ultrasonic vibration-assisted electric discharge machining: a research review[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230, 319-330(2016).

    [3] Dhupal D, Doloi B, Bhattacharyya B. Modeling and optimization on Nd∶YAG laser turned micro-grooving of cylindrical ceramic material[J]. Optics and Lasers in Engineering, 47, 917-925(2009).

    [4] Kibria G, Doloi B, Bhattacharyya B. Experimental analysis on Nd∶YAG laser micro-turning of alumina ceramic[J]. The International Journal of Advanced Manufacturing Technology, 50, 643-650(2010).

    [5] Wang S W, Ding Y, Cheng B et al. Mechanism and research advances of water-jet guided laser micromachining[J]. Chinese Journal of Lasers, 49, 1002404(2022).

    [6] Zhang G H, Huang Y X, Huang P et al. Study on energy transmission law of water-laser coupling in water-jet guided laser technology[J]. Laser Technology, 46, 749-754(2022).

    [7] Zhang Z Y, Qin C L, Feng Q Y et al. Investigation on localisation and three-dimensional micro-etching based on pulse laser electrochemical machining[J]. Journal of Mechanical Engineering, 50, 200-206(2014).

    [8] Wang Y F, Zhang W W. Theoretical and experimental study on hybrid laser and shaped tube electrochemical machining (laser-STEM) process[J]. The International Journal of Advanced Manufacturing Technology, 112, 1601-1615(2021).

    [9] Wang Y F, Yang F, Zhang W W. Development of laser and electrochemical machining based on internal total reflection[J]. Journal of the Electrochemical Society, 166, E481-E488(2019).

    [10] Saxena K K, Chen X L, Qian J et al. A tool-based precision hybrid laser-electrochemical micromachining process: process analysis by multidisciplinary simulations and experiments[J]. Journal of the Electrochemical Society, 167, 143502(2020).

    [11] Saxena K K, Qian J, Reynaerts D. Development and investigations on a hybrid tooling concept for coaxial and concurrent application of electrochemical and laser micromachining processes[J]. Precision Engineering, 65, 171-184(2020).

    [12] Saxena K K, Qian J, Reynaerts D. A tool-based hybrid laser-electrochemical micromachining process: experimental investigations and synergistic effects[J]. International Journal of Machine Tools and Manufacture, 155, 103569(2020).

    [13] Zhang Z Y, Wang Y M, Chen F et al. Effects of process stability on precision of micro-ECM using nanosecond pulse current[J]. Journal of Nanjing University of Aeronautics & Astronautics, 43, 66-70(2011).

    [14] Zhu H, Jiang Z X, Han J C et al. Fabrication of oxide-free dimple structure on germanium via electrochemical jet machining enhanced by opposing laser irradiation[J]. Journal of Manufacturing Processes, 85, 623-635(2023).

    [15] Zhang Z Y, Jiang Y J, Huang L et al. Experiment study of laser thermal enhanced electrochemical deposition[J]. Microsystem Technologies, 23, 1695-1701(2017).

    [16] Sun S F, Shao Y. Water-assisted laser induced plasma backside etching of Pyrex7740 glass[J]. Laser & Optoelectronics Progress, 54, 101404(2017).

    [17] Cao Y, Sun S F, Zhang F Y et al. Screening of chemical solution for laser high temperature chemical composite processing of GH4049 alloy[J]. Journal of Qingdao University of Technology, 41, 33-39(2020).

    [18] Ding R T, Sun S F, Liu Q Y et al. Effect of process parameters of laser chemical composite polishing on 304 stainless steel surface properties[J]. Laser Technology, 43, 295-300(2019).

    [19] Deconinck D, van Damme S, Deconinck J. A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: theoretical basis[J]. Electrochimica Acta, 60, 321-328(2012).

    [20] Yin J, Zhang Z Y, Zeng Y B et al. Simulation research of temperature field and electric field in laser electrochemical compound processing[J]. Laser & Optoelectronics Progress, 50, 121403(2013).

    [21] Zhang Z Y, Feng Q Y, Cai M X et al. Research on stress-etching complex microstructure of aluminum alloy in laser electrochemical machining[J]. The International Journal of Advanced Manufacturing Technology, 81, 2157-2165(2015).

    [22] Zhang H, Xu J W, Wang J M. Investigation of a novel hybrid process of laser drilling assisted with jet electrochemical machining[J]. Optics and Lasers in Engineering, 47, 1242-1249(2009).

    [23] Zhang H F. Research on the mechanism and characteristics of laser-induced cavitation impact micro-forming on ultra-thin wall materials[D](2020).

    [24] Qiang H. Study on interaction mechanism between laser-induced cavitation bubble and metal target underwater[D](2018).

    [25] Dickinson E J F, Wain A J. The Butler-Volmer equation in electrochemical theory: origins, value, and practical application[J]. Journal of Electroanalytical Chemistry, 872, 114145(2020).

    [26] Deconinck D, van Damme S, Albu C et al. Study of the effects of heat removal on the copying accuracy of the electrochemical machining process[J]. Electrochimica Acta, 56, 5642-5649(2011).

    [27] Sogandares F M, Fry E S. Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements[J]. Applied Optics, 36, 8699-8709(1997).

    [28] Hale G M, Querry M R. Optical constants of water in the 200-nm to 200-μm wavelength region[J]. Applied Optics, 12, 555-563(1973).

    [29] de Silva A K M, Altena H S J, McGeough J A. Precision ECM by process characteristic modelling[J]. CIRP Annals, 49, 151-155(2000).

    [30] Lohrengel M M, Klüppel I, Rosenkranz C et al. Microscopic investigations of electrochemical machining of Fe in NaNO3[J]. Electrochimica Acta, 48, 3203-3211(2003).

    [31] Deconinck D, Hoogsteen W, Deconinck J. A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part III: experimental validation[J]. Electrochimica Acta, 103, 161-173(2013).

    Xue Yang, Chengjuan Yang, Hao Tong, Huimin Qi, Yao Yao, Zhen Yang. Theoretical Analysis and Experimental Research on Tubular Electrode‑Coupled Laser and Electrochemical Hybrid Machining[J]. Chinese Journal of Lasers, 2024, 51(16): 1602402
    Download Citation