• Acta Optica Sinica
  • Vol. 37, Issue 11, 1123002 (2017)
Yilin Chen, Ji Xu, Nannan Shi, Yu Zhang, Yunfan Wang, Xu Gao, and Yunqing Lu
Author Affiliations
  • School of Opto-Electronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
  • show less
    DOI: 10.3788/AOS201737.1123002 Cite this Article Set citation alerts
    Yilin Chen, Ji Xu, Nannan Shi, Yu Zhang, Yunfan Wang, Xu Gao, Yunqing Lu. Mode Properties of Metal-Insulator-Metal Waveguide Bragg Grating[J]. Acta Optica Sinica, 2017, 37(11): 1123002 Copy Citation Text show less

    Abstract

    The dispersion and transmission characteristics of antisymmetric bound and symmetric bound modes in metal-insulator-metal (MIM) waveguide Bragg grating (WBG) structure are analyzed. The cut-off property and dispersion relations of the two modes with different dielectric materials are discussed, when the metal is set as silver and the insulator thickness is 700 nm. On the basis of this, the band structure of the antisymmetric and symmetric modes of the MIM WBG structure is proposed by using the Bloch mode analysis method. The transmission spectrum is calculated by transfer matrix method, and mode filtering properties of the structure in communication waveband are found. Furthermore, the dependent relationship between the cutoff frequency of the symmetrical mode, the mode transmission characteristic, the material and structural parameters is discussed. Through the selection and optimization of material parameters and geometrical dimensions, mode filter function can be achieved in a particular band, which can be broad or narrow. The structure has potential applications in the field of optical communications and integrated optics.
    Yilin Chen, Ji Xu, Nannan Shi, Yu Zhang, Yunfan Wang, Xu Gao, Yunqing Lu. Mode Properties of Metal-Insulator-Metal Waveguide Bragg Grating[J]. Acta Optica Sinica, 2017, 37(11): 1123002
    Download Citation