• Photonics Research
  • Vol. 8, Issue 6, 893 (2020)
Zhiping Zeng, Jing Ma, and Canhua Xu*
Author Affiliations
  • College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
  • show less
    DOI: 10.1364/PRJ.387582 Cite this Article Set citation alerts
    Zhiping Zeng, Jing Ma, Canhua Xu. Cross-cumulant enhanced radiality nanoscopy for multicolor superresolution subcellular imaging[J]. Photonics Research, 2020, 8(6): 893 Copy Citation Text show less
    References

    [1] Y. M. Sigal, R. Zhou, X. Zhuang. Visualizing and discovering cellular structures with super-resolution microscopy. Science, 361, 880-887(2018).

    [2] S. J. Sahl, S. W. Hell, S. Jakobs. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol., 18, 685-701(2017).

    [3] Z. Zeng, P. Xi. Advances in three-dimensional super-resolution nanoscopy. Microsc. Res. Tech., 79, 893-898(2016).

    [4] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [5] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Meth., 3, 793-796(2006).

    [6] S. T. Hess, T. P. Girirajan, M. D. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91, 4258-4272(2006).

    [7] J. Chojnacki, T. Staudt, B. Glass, P. Bingen, J. Engelhardt, M. Anders, J. Schneider, B. Müller, S. W. Hell, H.-G. Kräusslich. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science, 338, 524-528(2012).

    [8] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [9] W. Yan, Y. Yang, Y. Tan, X. Chen, Y. Li, J. Qu, T. Ye. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples. Photon. Res., 5, 176-181(2017).

    [10] M. G. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [11] X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, L. Chen. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol., 36, 451-459(2018).

    [12] A. L. Efros, D. J. Nesbitt. Origin and control of blinking in quantum dots. Nat. Nanotechnol., 11, 661-671(2016).

    [13] T. Dertinger, R. Colyer, G. Iyer, S. Weiss, J. Enderlein. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. USA, 106, 22287-22292(2009).

    [14] I. Yahiatene, S. Hennig, M. Müller, T. Huser. Entropy-based super-resolution imaging (ESI): from disorder to fine detail. ACS Photon., 2, 1049-1056(2015).

    [15] N. Gustafsson, S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira, R. Henriques. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat. Commun., 7, 12471(2016).

    [16] S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, R. Heintzmann. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat. Meth., 9, 195-200(2012).

    [17] D. T. Burnette, P. Sengupta, Y. Dai, J. Lippincott-Schwartz, B. Kachar. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc. Natl. Acad. Sci. USA, 108, 21081-21086(2011).

    [18] X. Chen, Z. Liu, R. Li, C. Shan, Z. Zeng, B. Xue, W. Yuan, C. Mo, P. Xi, C. Wu. Multicolor super-resolution fluorescence microscopy with blue and carmine small photoblinking polymer dots. ACS Nano, 11, 8084-8091(2017).

    [19] X. Chen, Z. Zeng, H. Wang, P. Xi. Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes. Nano Res., 8, 2251-2260(2015).

    [20] S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, T. Lasser. Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI). Opt. Nanosc., 1, 4-7(2012).

    [21] T. Dertinger, R. Colyer, R. Vogel, J. Enderlein, S. Weiss. Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI). Opt. Express, 18, 18875-18885(2010).

    [22] Z. Zeng, X. Chen, H. Wang, N. Huang, C. Shan, H. Zhang, J. Teng, P. Xi. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging. Sci. Rep., 5, 8359(2015).

    [23] T. Dertinger, A. Pallaoro, G. Braun, S. Ly, T. A. Laurence, S. Weiss. Advances in superresolution optical fluctuation imaging (SOFI). Quart. Rev. Biophys., 46, 210-221(2013).

    [24] S. Geissbuehler, A. Sharipov, A. Godinat, N. L. Bocchio, P. A. Sandoz, A. Huss, N. A. Jensen, S. Jakobs, J. Enderlein, F. G. Van Der Goot. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat. Commun., 5, 5830(2014).

    [25] S. Jiang, Y. Zhang, H. Yang, Y. Xiao, X. Miao, R. Li, Y. Xu, X. Zhang. Enhanced SOFI algorithm achieved with modified optical fluctuating signal extraction. Opt. Express, 24, 3037-3045(2016).

    [26] W. Xuehua, C. Danni, Y. Bin, N. Hanben. Statistical precision in super-resolution optical fluctuation imaging. Appl. Opt., 55, 7911-7916(2016).

    [27] L. Zou, S. Zhang, B. Wang, J. Tan. High-order super-resolution optical fluctuation imaging based on low-pass denoising. Opt. Lett., 43, 707-710(2018).

    [28] S. Culley, K. L. Tosheva, P. M. Pereira, R. Henriques. SRRF: universal live-cell super-resolution microscopy. Int. J. Biochem. Cell Biol., 101, 74-79(2018).

    [29] Z. Zeng, J. Ma, P. Xi, C. Xu. Joint tagging assisted fluctuation nanoscopy enables fast high-density super-resolution imaging. J. Biophoton., 11, e201800020(2018).

    [30] F. Chen, P. W. Tillberg, E. S. Boyden. Expansion microscopy. Science, 347, 543-548(2015).

    [31] S. Culley, D. Albrecht, C. Jacobs, P. M. Pereira, C. Leterrier, J. Mercer, R. Henriques. Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat. Meth., 15, 263-266(2018).

    [32] T. M. Watanabe, S. Fukui, T. Jin, F. Fujii, T. Yanagida. Real-time nanoscopy by using blinking enhanced quantum dots. Biophys. J., 99, L50-L52(2010).

    [33] R. Li, X. Chen, Z. Lin, Y. Wang, Y. Sun. Expansion enhanced nanoscopy. Nanoscale, 10, 17552-17556(2018).

    [34] T. Lukes, J. Pospisil, K. Fliegel, T. Lasser, G. M. Hagen. Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors. GigaScience, 7, giy002(2018).

    Zhiping Zeng, Jing Ma, Canhua Xu. Cross-cumulant enhanced radiality nanoscopy for multicolor superresolution subcellular imaging[J]. Photonics Research, 2020, 8(6): 893
    Download Citation