• Laser & Optoelectronics Progress
  • Vol. 59, Issue 1, 0114014 (2022)
Yanwei Chai1、2, Yun Zou1、2, Shuhao Liu1、2, Dong Wang1、2, and Yang Li1、2、*
Author Affiliations
  • 1School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou , Henan 450001, China
  • 2Henan Provincial Engineering Laboratory for Anti-Fatigue Manufacturing Technology, Zhengzhou , Henan 450001, China
  • show less
    DOI: 10.3788/LOP202259.0114014 Cite this Article Set citation alerts
    Yanwei Chai, Yun Zou, Shuhao Liu, Dong Wang, Yang Li. Characterization of Elastic Modulus of Laser Cladding Coatings Using Laser Ultrasonic Method[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0114014 Copy Citation Text show less
    References

    [1] Lin Y H, Lei Y P, Fu H G et al. Effect of Ni addition on microstructure and mechanical properties of TiB2/TiB titanium matrix composite coatings[J]. Acta Metallurgica Sinica, 50, 1520-1528(2014).

    [2] Fan L, Chen H Y, Dong Y H et al. Corrosion behavior of Fe-based laser cladding coating in hydrochloric acid solutions[J]. Acta Metallurgica Sinica, 54, 1019-1030(2018).

    [3] Li Y N, Li Z G, Wang X X et al. Fe-based wear-resistant coating on railroad switch prepared using laser cladding technology and its properties[J]. Chinese Journal of Lasers, 47, 0402009(2020).

    [4] Wu X Q, Yan H, Xin Y et al. Microstructure and wear properties of Ni-based composite coatings on aluminum alloy prepared by laser cladding[J]. Rare Metal Materials and Engineering, 49, 2574-2582(2020).

    [5] Hao Y B, Wang J, Yang P et al. Microstructures and properties of tin-based babbitt metal prepared by laser cladding deposition[J]. Chinese Journal of Lasers, 47, 0802009(2020).

    [6] Tong W H, Zhang X Y, Li W X et al. Effect of laser process parameters on the microstructure and properties of TiC reinforced Co-based alloy laser cladding layer[J]. Acta Metallurgica Sinica, 56, 1265-1274(2020).

    [7] Xu H Z, Ge H H, Wang J F et al. Effects of process parameters upon chromium element distribution in laser-cladded 316L stainless steel[J]. Chinese Journal of Laser, 47, 1202004(2020).

    [8] Hu G F, Yang Y, Sun R et al. Microstructure and properties of laser cladding NiCrBSi coating assisted by electromagnetic-ultrasonic compound field[J]. Surface and Coatings Technology, 404, 126469(2020).

    [9] Sun N, Fang Y, Zhang J Q et al. Effect of WC-12Co addition on microstructure and wear resistance of Inconel 625 matrix composites prepared by laser cladding[J]. Chinese Journal of Lasers, 48, 0602106(2021).

    [10] Liu B, Gong K, Qiao Y X et al. Evaluation of influence of preset crack burial depth on stress of laser cladding coating with metal magnetic memory[J]. Acta Metallurgica Sinica, 52, 241-248(2016).

    [11] Hu M, Tang J C, Chen X G et al. Microstructure and properties of WC-12Co composite coatings prepared by laser cladding[J]. Transactions of Nonferrous Metals Society of China, 30, 1017-1030(2020).

    [12] Wu Y, Yu G, He X L et al. Research on processing of laser cladding Ta-W alloy coatings[J]. Chinese Journal of Lasers, 38, 0803008(2011).

    [13] Lin Y H, Yuan Y, Wang L et al. Effect of electric-magnetic compound field on the microstructure and crack in solidified Ni60 alloy[J]. Acta Metallurgica Sinica, 54, 1442-1450(2018).

    [14] Yang L J, Li Y, Sun J J et al. Reflection and transmission of laser ultrasonic waves on surface defects[J]. Laser & Optoelectronics Progress, 56, 041203(2019).

    [15] Li Y, Peng X Y, Li D L et al. Experimental investigation on non-destructive measuring of the nitriding thickness of 40Cr steel by laser ultrasonic[J]. Journal of Zhengzhou University (Engineering Science), 41, 7-12(2020).

    [16] Liu B, Dong S Y. Influence of laser cladding coating thickness on surface crack depth evaluation with ultrasonic surface wave[J]. Nondestructive Testing Technologying, 37, 7-10(2015).

    [17] Ollendorf H, Schneider D, Schwarz T et al. Non-destructive evaluation of TiN films with interface defects by surface acoustic waves[J]. Surface and Coatings Technology, 74/75, 246-252(1995).

    [18] Kielczyński P, Pajewski W. Determination of the depth of a non-homogeneous surface layer in elastic materials using shear surface acoustic waves[J]. NDT International, 18, 25-32(1985).

    [19] Duggal A R, Rogers J A, Nelson K A. Real-time optical characterization of surface acoustic modes of polyimide thin-film coatings[J]. Journal of Applied Physics, 72, 2823-2839(1992).

    [20] Manna I, Majumdar J D, Chandra B R et al. Laser surface cladding of Fe-B-C, Fe-B-Si and Fe-BC-Si-Al-C on plain carbon steel[J]. Surface and Coatings Technology, 201, 434-440(2006).

    [21] Zhai Y F, Wang X H, Huang J. Microstructure and properties of TiC-Mo2C particles reinforced Fe-based composite coatings produced by laser cladding[J]. Chinese Journal of Lasers, 36, 3287-3292(2009).

    [23] Flannery C M, von Kiedrowski H. Effects of surface roughness on surface acoustic wave propagation in semiconductor materials[J]. Ultrasonics, 40, 83-87(2002).

    [24] Alleyne D N, Cawley P. A 2-dimensional Fourier transform method for the quantitative measurement of lamb modes[C], 1143-1146(1990).

    [25] Ponschab M, Kiefer D A, Rupitsch S J. Simulation-based characterization of mechanical parameters and thickness of homogeneous plates using guided waves[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 66, 1898-1905(2019).

    [26] Schneider D, Schwarz T, Schultrich B. Determination of elastic modulus and thickness of surface layers by ultrasonic surface waves[J]. Thin Solid Films, 219, 92-102(1992).

    [27] Chitsaz S, Tarighat A. Molecular dynamics simulation of N-A-S-H geopolymer macro molecule model for prediction of its modulus of elasticity[J]. Construction and Building Materials, 243, 118176(2020).

    Yanwei Chai, Yun Zou, Shuhao Liu, Dong Wang, Yang Li. Characterization of Elastic Modulus of Laser Cladding Coatings Using Laser Ultrasonic Method[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0114014
    Download Citation