• Laser & Optoelectronics Progress
  • Vol. 49, Issue 6, 60003 (2012)
Hui Zhanqiang1、* and Zhang Jianguo2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop49.060003 Cite this Article Set citation alerts
    Hui Zhanqiang, Zhang Jianguo. Recent Progress in All-Optical NRZ-to-RZ Format Conversion[J]. Laser & Optoelectronics Progress, 2012, 49(6): 60003 Copy Citation Text show less
    References

    [1] Alan E. Willner, Omer Faruk Yilmaz, Jian Wang et al.. Optically efficient nonlinear signal processing[J]. IEEE J. Sel. Topics Quant., 2011, 17(2): 320~332

    [2] Hsu-Feng Chou. High-speed OTDM and WDM networks using traveling-wave electroabsorption modulators[J]. IEEE J. Sel. Topics Quan., 2007, 13(1): 58~69

    [3] Yu. Yu, X. Zhang, D. Huang. All-optical RZ-to-NRZ format conversion with a tunable fibre based delay interferometer[J]. Chin. Phys. Lett., 2006, 24(3): 706~709

    [4] Yikai Su, Fangfei Liu, Qiang Li et al.. Signal processing in silicon waveguides[C]. IEEE, Communications and Photonics Conference and Exhibition (ACP), 2009. 1~2

    [5] Qianfan Xu, Michal Lipson. All-optical logic based on silicon micro-ring resonators[J]. Opt. Express, 2007, 15(3): 924~929

    [6] A. C. Tuner, M. A. Foster, A. L. Gaeta et al.. Ultra-low power parametric frequency conversion in a silicon microring resonator[J]. Opt. Express, 2008, 16(7): 488~4887

    [7] Yu Zhang, Enming Xu, Dexiu Huang. All-optical format conversion from RZ to NRZ utilizing microfiber resonator[J]. IEEE Photon. Technol. Lett., 2009, 21(17): 1202~1204

    [8] F. Xia, L. Sekaric, Y. Vlasov. Ultracompact optical buffers on a silicon chip[J]. Nat. Photonics, 2007, 1(1): 65~71

    [9] Q. Xu, S. Manipatruni, B. Schmidt et al.. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators[J]. Opt. Express, 2007, 15(2): 430~436

    [10] Linjie Zhou, Hui Chen. On-chip NRZ-to-PRZ format conversion using narrow-band Silicon microring resonator-based notch filters[J]. IEEE J. Lightwave Technol., 2008, 26(13): 1950~1955

    [11] W. Astar, Jeffrey B. Driscoll, Xiaoping Liu. All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB[J]. IEEE J. Sel. Topics Quant., 2010, 16(1): 234~249

    [12] Takashi Matsui, Kazuhide Nakajima, C. Fukai. Applicability of photonic crystal fiber with uniform air-hole structure to high-speed and wide-band transmission over conventional telecommunication bands[J]. IEEE J. Lightwave Technol., 2009, 27(23): 5410~5416

    [13] C. H. Kwok, S. H. Lee, K. K. Chow et al.. Photonic crystal fiber based all-optical modulation format conversions between NRZ and RZ with hybrid clock recovery from a PRZ signal[J]. IET Optoelectron., 2007, 1(1): 47~53

    [14] Gordon K. P. Lei, Chester Shu. 4 × 10 Gb/s time and wavelength multicasting with NRZ to RZ format conversion using four-wave mixing in a highly nonlinear photonic crystal fiber[C]. OSA / OFC/NFOEC 2010. JWA49

    [15] J. A. Armstrong, N. Broembergen, J. Dcuing et al.. Interactions between light waves in a nonlinear dielectric[J]. Phys. Rew., 1962, 127(6): 1918~1939

    [16] J. E. McGeehan. All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide[J]. Electron. Lett., 2007, 43(7): 409~410

    [17] J. Wang, J. Q. Sun, Q. Z. Sun. Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation[J]. Opt. Express, 2007, 15(4):1690~1699

    [18] H. Furukawa, A. Nirmalathas, N. Wada. Tunable all-optical wavelength conversion of 160 Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide[J]. IEEE Photon. Technol. Lett., 2007, 19(6): 384~386

    [19] S. L. Jansen, D. van den Borne, P. M. Krummrich et al.. Long-haul DWDM transmission systes employing optical phase conjugation[J]. IEEE J. Sel. Topics Quant., 2006, 12(4): 505~520

    [20] Jian Wang, Junqiang Sun, Xinliang Zhang et al.. Proposal for PPLN-based all-optical NRZ-to-CSRZ,RZ-to-CSRZ, NRZ-DPSK-to-CSRZ-DPSK, and RZ-DPSK-to-CSRZ-DPSK format conversions[J]. IEEE Photon. Technol. Lett., 2008, 20(12): 1039~1041

    [21] J. Wang, J. Q. Sun, Q. Z. Sun et al.. Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking[J]. Opt. Lett., 2007, 32(16): 2462~2464

    [22] Y. Liu. Error-free 320 Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier[J]. IEEE J. Lightwave Techol., 2007, 25(1): 103~108

    [23] X. Xie, J. Zhang, W. Zhao et al.. Analysis of polarization dependence for OTDM demultiplexers based on four-wavelength mixing in semiconductor optical amplifier[J]. Opt. Commun., 2008, 281: 958~964

    [24] Jianji Dong, Xinliang Zhang, Songnian Fu et al.. Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering[J]. IEEE J. Sel. Topics Quant., 2008, 14(3): 770~778

    [25] Jianji Dong, Songnian Fu, Xinliang Zhang et al.. Single SOA based all-optical adder assisted by optical bandpass filter: Theoretical analysis and performance optimization[J]. Opt. Commun., 2007, 270(2): 238~246

    [26] B. Mikkelsen, M. Vaa, H. N. Poulsen et al.. 40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer[J]. Electron. Lett., 1997, 33(2): 133~134

    [27] Luca Banchi, Marco Presi, Antonio D′Errico et al.. All-optical 10 and 40 Gbit/s RZ-to-NRZ format and wavelength conversion using semiconductor optical amplifiers[J]. IEEE J. Lightwave Technol., 2010, 28(1): 32~38

    [28] Jianji Dong, Xinliang Zhang, Jing Xu. 40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter[J]. Opt. Express, 2007, 15(6): 2907~2914

    [29] X. Yang, A. K. Mishra, R. J. Manning. All-optical 40 Gbit/s NRZ to RZ format conversion by nonlinear polarization rotation in SOAs[J]. Electron. Lett., 2007, 43(8): 469~471

    [30] Andrea Reale. Format conversion of optical data using four-wave mixing in semiconductor optical amplifiers[J]. IEEE J. Sel. Topics Quan., 2001, 7(4): 703~709

    [31] J. Dong, X. Zhang, F. Wang et al.. Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier[J]. Electron. Lett., 2008, 44(12): 763~764

    [32] C. H. Kwok, Chinlon Lin. Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum[J]. IEEE J. Sel. Topics Quan., 2006, 12(3): 451~458

    [33] Bill Ping-Piu Kuo, P. C. Chui, Kenneth Kin-Yip Wong. All-optical tunable delay with NRZ-to-RZ format conversion capability based on optical kerr switch and pulse pre-chirping[J]. IEEE J. Lightwave Technol., 2008, 26(23): 3770~3775

    [34] C. Yu, L. -S. Yan, T. Luo. Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber[J]. IEEE Photon. Technol. Lett., 2005, 17(3): 636~638

    [35] C. W. Chow, C. S. Wong. All-optical data-format and wavelength conversion in two-wavelength injection locked slave Fabry-Perot laser diodes[J]. Electron. Lett., 2003, 39(13): 997~999

    [36] C. H. Kwok, Chinlon Lin. Simultaneous 4 10 Gb/s NRZ-to-RZ modulation format conversion in nonlinear optical loop mirror with a photonic crystal fiber[J]. IEEE Photon. Technol. Lett., 2007, 19(22): 1825~1827

    [37] Jianjun Yu, Gee Kung Chang. 40 Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer[J]. Opt. Commun., 2005, 248(4-6): 419~422

    [38] Yu Yu, Xinliang Zhang, Jose B. Rosas-Fernández et al.. Simultaneous multiple DWDM channel NRZ-to-RZ regenerative format conversion at 10 and 20 Gb/s[J]. Opt. Express, 2009, 17(5): 3964~3969

    CLP Journals

    [1] Duan Jie, Wen Yu, Xie Xiaoping. An All-Optical XOR Logic Gate Scheme for Phase-Modulated or Amplitude-Modulated Signals[J]. Laser & Optoelectronics Progress, 2013, 50(3): 30602

    [2] Sun Zhenchao, Wang Zhi, Wu Chongqing, Wang Fu, Lin Qing, Jian Yangtian. Tailoring Return to Zero-Code Duty Radio Using a Continuous Adjustable Switch Window Terahertz Optical Asymmetrical Demultiplexer[J]. Chinese Journal of Lasers, 2014, 41(12): 1209003

    [3] Xu Jing, Jiang Yang, Zhou Zhuya, Li Hengwen, Wang Shunyan. Return-to-Zero/Nonreturn-to-Zero Signal Data Format Conversion Based on Microwave Photonic Filter[J]. Chinese Journal of Lasers, 2012, 39(9): 905008

    [4] Yu Zhenhong, Xie Fengfeng. Study of the Effects of Third-Order Dispersion in Ultra-High Speed Optical Fiber Communication System[J]. Laser & Optoelectronics Progress, 2014, 51(5): 50604

    Hui Zhanqiang, Zhang Jianguo. Recent Progress in All-Optical NRZ-to-RZ Format Conversion[J]. Laser & Optoelectronics Progress, 2012, 49(6): 60003
    Download Citation