• Acta Optica Sinica
  • Vol. 41, Issue 9, 0931001 (2021)
Shaowen Han1、**, Xilian Sun1、*, Bencai Lin2, Haibin Huang1, and Lang Zhou1
Author Affiliations
  • 1Institute of Photovoltaics, Nanchang University, Nanchang, Jiangxi 330031, China
  • 2Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
  • show less
    DOI: 10.3788/AOS202141.0931001 Cite this Article Set citation alerts
    Shaowen Han, Xilian Sun, Bencai Lin, Haibin Huang, Lang Zhou. Optimization of Antireflection Film for Crystalline Silicon Heterojunction Solar Cells on Planar Silicon[J]. Acta Optica Sinica, 2021, 41(9): 0931001 Copy Citation Text show less
    References

    [1] Huang H B, Zhou L, Yue Z H et al[M]. Photovoltaic physics and solar cell technology, 69-74(2020).

    [2] Zhou J, Yu J, Ma Z Q et al. Research on triple-layer anti-reflection structures and opto-elelctronic properties of SHJ solar cell[J]. Acta Energiae Solaris Sinica, 41, 303-309(2020).

    [3] Xiong H, Tang Y X, Hu L L et al. Stability of surface-modified porous silica antireflective coating[J]. Acta Optica Sinica, 39, 0831001(2019).

    [4] Wang L G, Zhao Z Y, Zhang X D et al. Optimization of light trapping structure on textured silicon substrate for heterojunction solar cells[J]. Acta Optica Sinica, 35, 0216001(2015).

    [5] Tanaka M, Taguchi M, Matsuyama T et al. Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer)[J]. Japanese Journal of Applied Physics, 31, 3518-3522(1992).

    [6] Liu E K, Zhu B S, Luo J S[M]. Physics of semiconductors, 132-156(2011).

    [7] Sun L F. Research on a new texturization method for single crystalline silicon solar cells[D]. Hangzhou: Zhejiang University, 26-45(2010).

    [8] Zhao Z Y, Zhang X D, Wang F Y et al. Modification of surface morphology of a textured silicon substrate and its application in heterojunction solar cells[J]. Acta Physica Sinica, 63, 321-327(2014).

    [9] Gong H Y, Huang H B, Zhou L. Effects of rounding of pyramid texture on light reflectivity and amorphous silicon thin film passivation of crystalline silicon[J]. Journal of Synthetic Crystals, 44, 913-917(2015).

    [10] Jiang Y J, Zhang X D, Zhao Y. Influence of chemical polishing on performances of silicon heterojunction solar cells[J]. Laser & Optoelectronics Progress, 56, 062402(2019).

    [11] Chen W. Research and application of inverted rectangular pyramid on silicon solar cells[D]. Beijing: University of Chinese Academy of Sciences, 33-58(2018).

    [12] Pascoe A R, Meyer S, Huang W C et al. Enhancing the optoelectronic performance of perovskite solar cells via a textured CH3NH3PbI3 morphology[J]. Advanced Functional Materials, 26, 1278-1285(2016). http://www.tandfonline.com/servlet/linkout?suffix=CIT0056&dbid=16&doi=10.1080%2F14686996.2018.1458578&key=10.1002%2Fadfm.201504190

    [13] Jaegermann W, Klein A, Mayer T. Interface engineering of inorganic thin-film solar cells-materials-science challenges for advanced physical concepts[J]. Advanced Materials, 21, 4196-4206(2009). http://onlinelibrary.wiley.com/doi/10.1002/adma.200802457/full

    [14] Shi E, Zhang L, Li Z et al. TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%[J]. Scientific Reports, 2, 884(2012).

    [15] Li D, Kunz T, Wolf N et al. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates[J]. Thin Solid Films, 583, 25-33(2015). http://www.sciencedirect.com/science/article/pii/S0040609015002679

    [16] Ma Q, Zhang W J, Ma D H et al. Optimal design of quadruple-layer antireflection coating structure for conversion efficiency enhancement in crystalline silicon solar cells[J]. Optik, 177, 123-130(2019). http://www.sciencedirect.com/science/article/pii/S0030402617316522

    [17] Bencherif H, Dehimi L, Pezzimenti F et al. Improving the efficiency of a-Si∶H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating[J]. Optik, 182, 682-693(2019). http://www.sciencedirect.com/science/article/pii/S0030402619300324

    [18] Xu Y F, Zhang J, Ai L et al. Fabrication of mesoporous double-layer antireflection coatings with near-neutral color and application in crystalline silicon solar modules[J]. Solar Energy, 201, 149-156(2020). http://www.sciencedirect.com/science/article/pii/S0038092X20302231

    [19] Mao S, Zhao J L. Optimal design for multi-layer diffractive optical elements with antireflection films[J]. Acta Optica Sinica, 39, 0305001(2019).

    [20] Wahabaalla E A. El-Menyawy E M, Abdallah T, et al. Improving the photoelectrical conversion efficiency of silicon solar cells using ZnO∶Al/porous silicon double antireflective layers[J]. Applied Physics A, 125, 1-11(2019).

    [21] Liu B F, Qiu S Y, Chen N et al. Double-layered silicon nitride antireflection coatings for multicrystalline silicon solar cells[J]. Materials Science in Semiconductor Processing, 16, 1014-1021(2013).

    [22] Mahdjoub A, Zighed L. New designs for graded refractive index antireflection coatings[J]. Thin Solid Films, 478, 299-304(2005).

    [23] Shen W Z, Li Z P[M]. Physics and devices of silicon heterojunction solar cells, 131-133(2014).

    [24] Fujiwara H, Kondo M. Effects of a-Si∶H layer thicknesses on the performance of a-Si∶H/c-Si heterojunction solar cells[J]. Journal of Applied Physics, 101, 054516(2007). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4943054

    [25] Jensen N, Hausner R M, Bergmann R B et al. Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells[J]. Progress in Photovoltaics: Research and Applications, 10, 1-13(2002).

    Shaowen Han, Xilian Sun, Bencai Lin, Haibin Huang, Lang Zhou. Optimization of Antireflection Film for Crystalline Silicon Heterojunction Solar Cells on Planar Silicon[J]. Acta Optica Sinica, 2021, 41(9): 0931001
    Download Citation