• Laser & Optoelectronics Progress
  • Vol. 54, Issue 4, 41901 (2017)
Jiang Jian*, Zhang Jiandong, Wang Kai, Xiao Xuan, and Zhang Zuxing
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.041901 Cite this Article Set citation alerts
    Jiang Jian, Zhang Jiandong, Wang Kai, Xiao Xuan, Zhang Zuxing. Theoretical Study on Broadband Frequency Doubling in Aperiodically Poled Lithium Niobate Crystal[J]. Laser & Optoelectronics Progress, 2017, 54(4): 41901 Copy Citation Text show less
    References

    [1] Chen B Q, Zhang C, Hu C Y, et al. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal[J]. Phys Rev Lett, 2015, 115(8): 083902.

    [2] Zhang L Y, Liu Y J, Huang J J, et al. Second harmonic generation of ultrashort pulses in refractive-index-linear-modulating nonlinear crystals[J]. J Opt Soc Am B, 2014, 31(5): 1202-1210.

    [3] Wen Xin, Han Yashuai, He Jun, et al. Generation of 397.5 nm ultra-violet laser by frequency doubling in a PPKTP-crystal semi-monolithic resonant cavity[J]. Acta Optica Sinica, 2016, 36(4): 0414001.

    [4] Yang Sheng, Huang Xiaojun, Wu Zhaohui, et al. Broadband frequency doubling of Er-fiber mode-locked laser in BBO crystal[J]. Laser & Optoelectronics Progress, 2015, 52(12): 121901.

    [5] Li Huijuan, Zhang Miao, Li Fengqin. High-power single-frequency 461 nm generation from an intracavity doubling of Ti: sapphire laser with LBO[J]. Chinese J Lasers, 2016, 43(3): 0302003.

    [6] Cardoso L, Pires H, Figueira G. Increased bandwidth optical parametric amplification of supercontinuum pulses with angular dispersion[J]. Opt Lett, 2009, 34(9): 1369-1371.

    [7] Zhang Xin, Zhang Hengli, Mao Yefei, et al. Efficient methods of green output by second harmonic generation with short pulse broad-band laser[J]. Chinese J Lasers, 2016, 43(2): 0202003.

    [8] Kumar S C, Samanta G K, Devi K, et al. High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation[J]. Opt Express, 2011, 19(12): 11152-11169.

    [9] Deng Qinghua, Zhang Xiaomin, Ding Lei, et al. Stabilizing second harmonic generation output using cascaded crystals[J]. Acta Physica Sinica, 2011, 60(2): 024213.

    [10] Han Wei, Zheng Wanguo, Yang Yisheng, et al. Second-harmonic generation at retracing point of phase matching with pre-chirp compensation[J]. Acta Optica Sinica, 2007, 27(1): 133-137.

    [11] Lee K J, Yoon C S, Rotermund F. Analysis of possible group-velocity-matched broadband second-harmonic generation in various periodically poled nonlinear crystals[J]. Jap J Appl Phys, 2005, 44(3): 1264-1268.

    [12] Zhang J F, Chen Y P, Lu F, et al. Effect of MgO doping of periodically poled lithium niobate on second-harmonic generation of femtosecond laser pulses[J]. Appl Opt, 2007, 46(32): 7792-7796.

    [13] Yu N E, Ro J H, Cha M, et al. Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band[J]. Opt Lett, 2002, 27(12): 1046-1048.

    [14] Dang W R, Chen Y P, Chen X F. Performance enhancement for ultrashort-pulse wavelength conversion by using an aperiodic domain-inverted optical superlattice[J]. Photon Technol Lett, 2012, 24(5): 347-349.

    [15] Bostani A, Ahlawat M, Tehranchi A, et al. Design, fabrication and characterization of a specially apodized chirped grating for reciprocal second harmonic generation[J]. Opt Express, 2015, 23(4): 5183-5189.

    [16] Kong Y, Chen X F, Xia Y X. Optimized second harmonic generation of femtosecond pulse by phase-blanking effect in aperiodically optical superlattice[J]. Chinese Phys Lett, 2008, 25(4): 1297-1300.

    [17] Zhang Yuantao, Qu Qiuzhi, Qian Jun, et al. Thermal effect analysis of 1560 nm laser frequency doubling in a PPLN crystal[J]. Chinese J Lasers, 2015, 42(7): 0708002.

    [18] Jiang J, Chang J H, Feng S J, et al. Mid-IR multiwavelength difference frequency generation based on fiber lasers[J]. Opt Express, 2010, 18(5): 4740-4747.

    [19] Prakash O, Lim H-H, Kim B-J, et al. Collinear broadband optical parametric generation in periodically poled lithium niobate crystals by group velocity matching[J]. Appl Phys B, 2008, 92(4): 535-541.

    [20] Chen X F, Wu F, Zeng X L, et al. Multiple quasi-phase-matching in a nonperiodic domain-inverted optical superlattice[J]. Phys Rev A, 2004, 69(1): 013818.

    [21] Lu M, Chen X F, Chen Y P, et al. Algorithm to design aperiodic optical superlattice for multiple quasi-phase matching[J]. Appl Opt, 2007, 46(19): 4138-4143.

    [22] Edwards G J, Lawrence M. A temperature-dependent dispersion equation for congruently grown lithium niobate[J]. Opt Quant Elect, 1984, 16(4): 373-375.

    [23] Lei Yingjie, Zhang Shanwen, Li Xuwu, et al. Matlab genetic algorithm toolbox and its application[M]. Xi′an: Xidian University Press, 2005: 1-105.

    Jiang Jian, Zhang Jiandong, Wang Kai, Xiao Xuan, Zhang Zuxing. Theoretical Study on Broadband Frequency Doubling in Aperiodically Poled Lithium Niobate Crystal[J]. Laser & Optoelectronics Progress, 2017, 54(4): 41901
    Download Citation