• Acta Optica Sinica
  • Vol. 41, Issue 3, 0310001 (2021)
Xiangdong Zhang*, Tengjun Wang, Shaojun Zhu, and Yun Yang
Author Affiliations
  • School of Geology Engineering and Geomatics, Chang′an University, Xi′an, Shaanxi 710054, China
  • show less
    DOI: 10.3788/AOS202141.0310001 Cite this Article Set citation alerts
    Xiangdong Zhang, Tengjun Wang, Shaojun Zhu, Yun Yang. Hyperspectral Image Classification Based on Dilated Convolutional Attention Neural Network[J]. Acta Optica Sinica, 2021, 41(3): 0310001 Copy Citation Text show less
    Structure of tandem 3D-2D-CNN
    Fig. 1. Structure of tandem 3D-2D-CNN
    Schematic of standard convolution and dilated convolution. (a) 2D standard convolution; (b) 2D dilated convolution (r=2,2); (c) 3D standard convolution; (d) 3D dilated convolution (r=2,2,2)
    Fig. 2. Schematic of standard convolution and dilated convolution. (a) 2D standard convolution; (b) 2D dilated convolution (r=2,2); (c) 3D standard convolution; (d) 3D dilated convolution (r=2,2,2)
    Multi-scale feature fusion structure. (a) Multi-scale spatial-spectral feature fusion module; (b) multi-scale spatial feature fusion module
    Fig. 3. Multi-scale feature fusion structure. (a) Multi-scale spatial-spectral feature fusion module; (b) multi-scale spatial feature fusion module
    Structure diagram of attention module. (a) Spatial-spectral attention module; (b) spatial attention module
    Fig. 4. Structure diagram of attention module. (a) Spatial-spectral attention module; (b) spatial attention module
    Overall structure of proposed network
    Fig. 5. Overall structure of proposed network
    False color image and ground truth of data sets. (a) PU data set; (b) SA data set
    Fig. 6. False color image and ground truth of data sets. (a) PU data set; (b) SA data set
    Comparison of accuracy for different spatial sizes. (a) PU data set; (b) SA data set
    Fig. 7. Comparison of accuracy for different spatial sizes. (a) PU data set; (b) SA data set
    Classification maps and partial enlarged maps with different algorithms on PU data set. (a) Ground truth image; (b) 2D-CNN-MLP; (c) 3D-CNN-CRF; (d) Hybrid-CNN; (e) Dilated-3D-CNN; (f) 3D-2D-ADCNN
    Fig. 8. Classification maps and partial enlarged maps with different algorithms on PU data set. (a) Ground truth image; (b) 2D-CNN-MLP; (c) 3D-CNN-CRF; (d) Hybrid-CNN; (e) Dilated-3D-CNN; (f) 3D-2D-ADCNN
    Classification maps with different algorithms on SA data set. (a) Ground truth image; (b) 2D-CNN-MLP; (c) 3D-CNN-CRF; (d) Hybrid-CNN; (e) Dilated-3D-CNN; (f) 3D-2D-ADCNN
    Fig. 9. Classification maps with different algorithms on SA data set. (a) Ground truth image; (b) 2D-CNN-MLP; (c) 3D-CNN-CRF; (d) Hybrid-CNN; (e) Dilated-3D-CNN; (f) 3D-2D-ADCNN
    Overall accuracy with different numbers of training samples. (a) PU data set; (b) SA data set
    Fig. 10. Overall accuracy with different numbers of training samples. (a) PU data set; (b) SA data set
    Kernel numberPavia UniversitySalinas
    OA /%Training time /sTest time /sOA /%Training time /sTest time /s
    1697.78118.0329.7196.48243.4266.38
    2096.87130.5634.1997.28324.7176.93
    2497.17149.9338.3496.26373.5788.24
    2896.25185.7443.3595.88383.8398.84
    3297.05165.5846.7696.12416.47107.36
    Table 1. Comparison of overall accuracy, training time, and test time for different convolution kernel numbers
    ArchitecturePavia UniversitySalinas
    ParameterOA /%ParameterOA /%
    3D-2D-CNN (baseline)7559698.1113964498.03
    3D-2D-CNN+dilated convolution5678398.4711040298.42
    3D-2D-CNN+attention7564398.5113971898.38
    3D-2D-CNN+dilated convolution+attention5685798.7311047698.61
    Table 2. Comparison of parameters and overall accuracy for different model architectures
    Category name2D-CNN-MLP3D-CNN-CRFHybrid-CNNDilated-3D-CNN3D-2D-ADCNN
    Asphalt87.3386.7890.8984.8696.82
    Meadows90.4686.5196.3187.6799.47
    Gravels84.9185.7694.4587.7399.35
    Trees93.0096.2792.3997.7197.77
    Painted-Metal-Sheets99.7299.9099.7899.7599.92
    Bare-Soil88.4685.1899.0685.94100.00
    Bitumen94.6793.2399.2489.3399.84
    Self-Blocking-Bricks85.0486.7487.8183.7698.91
    Shadows98.9499.1196.8799.8298.57
    OA89.7687.9294.8989.4898.75
    AA91.3991.0595.2089.8998.96
    Kappa96.5484.2293.2686.0498.60
    Table 3. Comparison of classification accuracy for different algorithms on PU data setunit: %
    Category name2D-CNN-MLP3D-CNN-CRFHybrid-CNNDilated-3D-CNN3D-2D-ADCNN
    Brocoli_green_weeds_199.9899.3999.9999.97100.00
    Brocoli_green_weeds_299.4898.9299.9699.70100.00
    Fallow99.2799.5998.5799.08100.00
    Fallow_rough_plow99.3099.1699.4799.4799.61
    Fallow_smooth98.4497.4498.6596.8699.80
    Stubble99.7699.9499.7999.76100.00
    Celery99.6199.6099.8499.60100.00
    Grapes_untrained79.4076.0988.9070.8394.17
    Soil_vinyard_develop99.9299.7398.6199.05100.00
    Corn_senesced_green_weeds95.6194.5299.1892.72100.00
    Lettuce_romaine_4wk99.0299.2999.8298.78100.00
    Lettuce_romaine_5wk99.9999.8899.0199.92100.00
    Lettuce_romaine_6wk99.9899.7899.5299.33100.00
    Lettuce_romaine_7wk98.8699.0199.4199.3899.89
    Vinyard_untrained81.9079.8394.7181.4099.09
    Vinyard_vertical_trellis98.0597.1499.8198.36100.00
    OA92.5791.3896.4890.2598.61
    AA96.7996.2198.4595.8299.53
    Kappa91.7390.4096.0989.1798.45
    Table 4. Comparison of classification accuracy for different algorithms on SA data setunit: %
    Item2D-CNN-MLP3D-CNN-CRFHybrid-CNNDilated-3D-CNN3D-2D-ADCNN
    Parameter33129155017484479341380156857
    Training time /s8.91103.3063.75671.89122.22
    Test time /s2.1713.047.8572.3651.93
    Table 5. Comparison of parameters, training time, and test time for different algorithms on PU data set
    Item2D-CNN-MLP3D-CNN-CRFHybrid-CNNDilated-3D-CNN3D-2D-ADCNN
    Parameter335561921444845696498912110476
    Training time /s16.94276.0897.082122.97327.33
    Test time /s2.7027.699.70170.50122.61
    Table 6. Comparison of parameters, training time, and test time for different algorithms on SA data set
    Xiangdong Zhang, Tengjun Wang, Shaojun Zhu, Yun Yang. Hyperspectral Image Classification Based on Dilated Convolutional Attention Neural Network[J]. Acta Optica Sinica, 2021, 41(3): 0310001
    Download Citation