• Laser & Optoelectronics Progress
  • Vol. 58, Issue 8, 0810022 (2021)
Yuchen Jiang* and Bin Zhu
Author Affiliations
  • State Key Laboratory of Pulsed Power Laser Technology, College of Electronic Countermeasures, National University of Defense Technology, Hefei, Anhui 230009, China
  • show less
    DOI: 10.3788/LOP202158.0810022 Cite this Article Set citation alerts
    Yuchen Jiang, Bin Zhu. Data Augmentation for Remote Sensing Image Based on Generative Adversarial Networks Under Condition of Few Samples[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810022 Copy Citation Text show less
    References

    [1] Bjerrum E J. SMILES enumeration as data augmentation for neural network modeling of molecules[EB/OL]. (2017-05-17)[2020-07-30]. https:∥www.researchgate.net/publication/315495821_SMILES_Enumeration_as_Data_Augmentation_for_Neural_Network_Modeling_of_Molecules

    [2] Zhong Z, Zheng L, Kang G L et al. Random erasing data augmentation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 13001-13008(2020).

    [3] Lemley J, Bazrafkan S, Corcoran P et al. Smart augmentation learning an optimal data augmentation strategy[J]. IEEE Access, 5, 5858-5869(2017). http://ieeexplore.ieee.org/document/7906545

    [4] Dinh L, Krueger D, Bengio Y et al. NICE: non-linear independent components estimation[EB/OL]. (2014-10-30)[2015-04-10]. http://arxiv.org/abs/1410.8516?context=cs.LG.html

    [5] Zhang X D, Wang T J, Yang Y et al. Classification of small-sized sample hyperspectral images based on multi-scale residual network[J]. Laser & Optoelectronics Progress, 57, 162801(2020).

    [6] Jin W P, Guo J C, Qi Q et al. Underwater image enhancement based on conditional generative adversarial network[J]. Laser & Optoelectronics Progress, 57, 141002(2020).

    [7] He Q, Li Y, Song W et al. Multimodal remote sensing image classification with small sample size based on high-level feature fusion[J]. Laser & Optoelectronics Progress, 56, 111001(2019).

    [8] Cubuk E D, Zoph B, Mané D et al. AutoAugment: learning augmentation strategies from data[C]. //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA, 113-123(2019).

    [9] Terrance D, Graham W T. Improved regularization of convolutional neural networks with cutout[EB/OL]. (2017-08-15)[2017-11-29]. http:// arxiv.org/abs/1708.04552?context=cs.LG.html

    [10] Chen P, Liu S, Zhao H et al. GridMask data augmentation[EB/OL]. (2020-01-13)[2020-01-14]. http:// arxiv.org/abs/2001.04086?context=cs.LG.html

    [11] Zhang H, Cisse M, Dauphin Y N et al. Mixup: beyond empirical risk minimization[EB/OL]. (2017-10-25)[2018-04-27]. http:∥arxiv.org/abs/1710.09412?context=cs.LG.html

    [12] Hendrycks D, Mu N, Cubuk E D et al. AugMix: a simple data processing method to improve robustness and uncertainty[EB/OL]. (2019-11-05)[2020-02-17]. http:// arxiv.org/abs/1912.02781?context=cs. LG.html

    [13] Kingma D P, Welling M. Auto-encoding variational Bayes[EB/OL]. (2013-11-20)[2014-05-01]. http://arxiv.org/abs/1312.6114?context=cs. LG.html

    [14] Goodfellow I, Pouget J, Mirza M et al. Generative adversarial nets[C]. //Proceedings of the 27th International Conference on Neural Information Processing Systems, December 8-13, 2014, Montreal, Quebec, Canada. New York: ACM, 2672-2680(2014).

    [15] Karras T, Laine S, Aittala M et al. Analyzing and improving the image quality of StyleGAN[EB/OL]. (2019-11-03)[2020-03-23]. http:// arxiv.org/abs/1912.04958?context=cs.LG.html

    [16] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2020-03-23]. http:// arxiv.org/abs/1804.02767?context=cs.LG.html

    [17] Ronneberger O, Fischer P, Brox T et al. U-net: convolutional networks for biomedical image segmentation[EB/OL]. (2015-05-18)[2020-03-23]. https:∥arxiv.org/abs/1505.04597

    [18] Radford A, Metz L, Chintala S et al. Unsupervised representation learning with deep convoluti-onal generative adversarial networks[EB/OL]. (2015-11-19)[2016-01-07]. http://arxiv.org/abs/1511.06434?context=cs.LG.htm

    [19] Arjovsky M, Chintala S, Bottou L. Wasserstein gan[EB/OL]. (2017-01-26)[ 2017-11-06]. http:∥arxiv.org/abs/1701.07875?context=cs.LG.html

    [20] Karras T, Laine S, Aila T et al. A style-based generator architecture for generative adversarial networks[EB/OL]. (2018-11-12)[2019-03-29]. http:// arxiv.org/abs/1812.04948?context=cs.LG.html

    [21] Zhao S, Liu Z, Lin J et al. Differentiable augmentation for data-efficient gan training[EB/OL]. (2020-06-18)[2020-03-23]. http://arxiv.org/abs2006.10738?context=cs.LG.html

    [22] Ojala T, Pietikainen M, Maenpaa T et al. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 24, 971-987(2002). http://link.springer.com/10.1007/3-540-45054-8_27

    [23] Li K, Wan G, Cheng G et al. Object detection in optical remote sensing images: a survey and a new benchmark[EB/OL]. (2019-08-31)[2019-09-22]. http://arxiv.org/abs/1909.00133?context=cs.LG.html

    [24] Liu Y Y, Zhang J M, Wang K P et al. Fast underwater target recognition method based on unbalanced datasets[EB/OL]. (2019-07-19) [2019-07-30]. http://kns.cnki.net/kcms/ detail/11.2127.TP.20190719.1443.018.html

    [25] Long Y, Gong Y P, Xiao Z F et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 2486-2498(2017).

    Yuchen Jiang, Bin Zhu. Data Augmentation for Remote Sensing Image Based on Generative Adversarial Networks Under Condition of Few Samples[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810022
    Download Citation