• Chinese Journal of Lasers
  • Vol. 48, Issue 2, 202008 (2021)
Cai Mingyong, Jiang Guochen, and Zhong Minlin*
Author Affiliations
  • Laser Materials Processing Research Center, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/CJL202148.0202008 Cite this Article Set citation alerts
    Cai Mingyong, Jiang Guochen, Zhong Minlin. Laser Fabricated Electrodes with Micro-Nano Structures for Electrocatalytic Water Splitting[J]. Chinese Journal of Lasers, 2021, 48(2): 202008 Copy Citation Text show less
    References

    [1] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 488, 294-303(2012). http://smartsearch.nstl.gov.cn/paper_detail.html?id=d08f8062da5f34bbffa1f164de3c08e5

    [2] Turner J A. Sustainable hydrogen production[J]. Science, 305, 972-974(2004).

    [3] Sapountzi F M, Gracia J M. Weststrate C J J, et al. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas[J]. Progress in Energy and Combustion Science, 58, 1-35(2017).

    [4] Taibi E, Miranda R, Vanhoudt W et al[2020-07-06]. Hydrogen from renewable power: technology outlook for the energy transition [2020-07-06].https://www.researchgate.net/publication/339788785_Hydrogen_from_renewable_power_Technology_outlook_for_the_ene.

    [5] Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 44, 5148-5180(2015).

    [6] Liu Y. Progress of green energy hydrogen energy and technology of hydrogen production by water electrolysis[J]. Chinese Journal of Power Sources, 36, 1579-1581(2012).

    [7] Zeng K, Zhang D K. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in Energy and Combustion Science, 36, 307-326(2010).

    [8] Li J, Zheng G F. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts[J]. Advanced Science, 4, 1600380(2017).

    [9] Tao L M. Design, synthesis, and evaluation of spinel transition-metal-based electrocatalysts for water-splitting[D]. Wuhan: Huazhong University of Science and Technology(2018).

    [10] Wang J, Xu F, Jin H Y et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications[J]. Advanced Materials, 29, 1605838(2017).

    [11] Anantharaj S, Ede S R, Karthick K et al. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment[J]. Energy & Environmental Science, 11, 744-771(2018).

    [12] Lyu F L, Wang Q F, Choi S M et al. Noble-metal-free electrocatalysts for oxygen evolution[J]. Small, 15, 1804201(2019).

    [13] Seh Z W, Kibsgaard J, Dickens C F et al. 355(6321): eaad4998[J]. experiment in electrocatalysis: insights into materials design. Science(2017).

    [14] Sun H M, Yan Z H, Liu F M et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 32, 1806326(2020).

    [15] Sivanantham A, Ganesan P, Vinu A et al. Surface activation and reconstruction of non-oxide-based catalysts through in situ electrochemical tuning for oxygen evolution reactions in alkaline media[J]. ACS Catalysis, 10, 463-493(2020).

    [16] Jia X D, Zhao Y F, Chen G B et al. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst[J]. Advanced Energy Materials, 6, 1502585(2016).

    [17] Liu H J, He Q, Jiang H L et al. Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting[J]. ACS Nano, 11, 11574-11583(2017).

    [18] Palneedi H, Park J H, Maurya D et al. Laser irradiation of metal oxide films and nanostructures: applications and advances[J]. Advanced Materials, 30, 1705148(2018).

    [19] Zhou Y. Laser synthesis of transition metal compounds abundant with structural defects and their application in energy field[D]. Tianjin: Tianjin University(2017).

    [20] Zhang D S, Liu J, Li P F et al. Recent advances in surfactant-free, surface-charged, and defect-rich catalysts developed by laser ablation and processing in liquids[J]. ChemNanoMat, 3, 512-533(2017).

    [21] Niu K Y, Yang J, Kulinich S A et al. Morphology control of nanostructures via surface reaction of metal nanodroplets[J]. Journal of the American Chemical Society, 132, 9814-9819(2010).

    [22] Niu K Y, Lin F, Jung S et al. Tuning complex transition metal hydroxide nanostructures as active catalysts for water oxidation by a laser-chemical route[J]. Nano Letters, 15, 2498-2503(2015).

    [23] Sun X C, Wang J Q, Yin Y H et al. Laser-ablation-produced cobalt nickel phosphate with high-valence nickel ions as an active catalyst for the oxygen evolution reaction[J]. Chemistry-A European Journal, 26, 2793-2797(2020).

    [24] Zhou Y, Dong C K, Han L L et al. Top-down preparation of active cobalt oxide catalyst[J]. ACS Catalysis, 6, 6699-6703(2016).

    [25] Qiu K W, Xi C, Zhang Y et al. Laser-induced oxygen vacancies in FeCo2O4 nanoparticles for boosting oxygen evolution and reduction[J]. Chemical Communications, 55, 8579-8582(2019).

    [26] Waag F, Gökce B, Kalapu C et al. Adjusting the catalytic properties of cobalt ferrite nanoparticles by pulsed laser fragmentation in water with defined energy dose[J]. Scientific Reports, 7, 13161(2017).

    [27] Yu M Q, Waag F, Chan C K et al. Laser fragmentation-induced defect-rich cobalt oxide nanoparticles for electrochemical oxygen evolution reaction[J]. ChemSusChem, 13, 520-528(2020).

    [28] Zhong W, Lin Z, Feng S et al. Improved oxygen evolution activity of IrO2 by in situ engineering of an ultra-small Ir sphere shell utilizing a pulsed laser[J]. Nanoscale, 11, 4407-4413(2019).

    [29] Wang X R, Liu J Y, Liu Z W et al. Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER[J]. Advanced Materials, 30, 1800005(2018).

    [30] Feng T, Zhao X R, Dong C K et al. Boosting reversible oxygen electrocatalysis with enhanced interfacial pyridinic-N-Co bonding in cobalt oxide/mesoporous N-doped graphene hybrids[J]. Nanoscale, 10, 22140-22147(2018).

    [31] Yin Y H, Sun X C, Zhou M et al. Laser-induced pyridinic-nitrogen-rich defective carbon nanotubes for efficient oxygen electrocatalysis[J]. ChemCatChem, 11, 6131-6138(2019).

    [32] Liu Z W, Zhao X R, Chen X L et al. Laser synthesized bi-functional hybrid catalyst oxygen-defective Co3O4-x/N-graphene for oxygen electrode reactions[J]. Chemistry Letters, 48, 118-121(2019).

    [33] Hunter B M, Blakemore J D, Deimund M et al. Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids[J]. Journal of the American Chemical Society, 136, 13118-13121(2014).

    [34] Hu S, Goenaga G, Melton C et al. PtCo/CoOx nanocomposites: bifunctional electrocatalysts for oxygen reduction and evolution reactions synthesized via tandem laser ablation synthesis in solution-galvanic replacement reactions[J]. Applied Catalysis B: Environmental, 182, 286-296(2016).

    [35] Pizzolato E, Scaramuzza S, Carraro F et al. Water oxidation electrocatalysis with iron oxide nanoparticles prepared via laser ablation[J]. Journal of Energy Chemistry, 25, 246-250(2016).

    [36] Nishi T, Hayasaka Y, Suzuki T M et al. Electrochemical water oxidation catalysed by CoO-Co2O3 -Co(OH)2 multiphase-nanoparticles prepared by femtosecond laser ablation in water[J]. ChemistrySelect, 3, 4979-4984(2018).

    [37] Vassalini I, Borgese L, Mariz M et al. Enhanced electrocatalytic oxygen evolution in Au-Fe nanoalloys[J]. Angewandte Chemie International Edition, 56, 6589-6593(2017).

    [38] Wang X, Li Z, Wu D Y et al. Porous cobalt-nickel hydroxide nanosheets with active cobalt ions for overall water splitting[J]. Small, 15, 1804832(2019).

    [39] Gao Z W, Ma T, Chen X M et al. Strongly coupled CoO nanoclusters/CoFe LDHs hybrid as a synergistic catalyst for electrochemical water oxidation[J]. Small, 14, 1800195(2018).

    [40] Gao Z W, Liu J Y, Chen X M et al. Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates[J]. Advanced Materials, 31, 1804769(2019).

    [41] Li Z, Zhang Y, Feng Y et al. Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions[J]. Advanced Functional Materials, 29, 1903444(2019).

    [42] Meng C, Lin M C, Sun X C et al. Laser synthesis of oxygen vacancy-modified CoOOH for highly efficient oxygen evolution[J]. Chemical Communications, 55, 2904-2907(2019).

    [43] Wang H B, Wang J Q, Mintcheva N et al. Laser synthesis of iridium nanospheres for overall water splitting[J]. Materials, 12, 3028(2019).

    [44] Xiao Z H, Jiang D C, Xu H et al. UV laser regulation of surface oxygen vacancy of CoFe2O4 for enhanced oxygen evolution reaction[J]. Chinese Journal of Chemical Physics, 31, 691-694(2018).

    [45] Ou G, Fan P X, Zhang H J et al. Large-scale hierarchical oxide nanostructures for high-performance electrocatalytic water splitting[J]. Nano Energy, 35, 207-214(2017).

    [46] Cai M Y, Pan R, Liu W J et al. Laser-assisted doping and architecture engineering of Fe3O4 nanoparticles for highly enhanced oxygen evolution reaction[J]. ChemSusChem, 12, 3562-3570(2019).

    [47] Cai M Y, Liu W J, Luo X et al. Three-dimensional and in situ-activated spinel oxide nanoporous clusters derived from stainless steel for efficient and durable water oxidation[J]. ACS Applied Materials & Interfaces, 12, 13971-13981(2020).

    [48] Cai M Y, Pan R, Liu W J et al. Pulsed laser-assisted synthesis of defect-rich NiFe-based oxides for efficient oxygen evolution reaction[J]. Journal of Laser Applications, 32, 022032(2020).

    [49] Li Y J, Zhou X F, Qi W H et al. Ultrafast fabrication of Cu oxide micro/nano-structures via laser ablation to promote oxygen evolution reaction[J]. Chemical Engineering Journal, 383, 123086(2020).

    [50] Wu H F, Yin K, Qi W H et al. Rapid fabrication of Ni/NiO@CoFe layered double hydroxide hierarchical nanostructures by femtosecond laser ablation and electrodeposition for efficient overall water splitting[J]. ChemSusChem, 12, 2773-2779(2019).

    [51] Zhou X F, Qi W H, Yin K et al. Co(OH)2 nanosheets supported on laser ablated Cu foam: an efficient oxygen evolution reaction electrocatalyst[J]. Frontiers in Chemistry, 7, 900(2020).

    [52] Karthik N, Tian T. Edison T N J I, et al. Pulsed laser rusted stainless steel:a robust electrode material applied for energy storage and generation applications[J]. Sustainable Energy & Fuels, 4, 1242-1253(2020).

    [53] Cui X D, Zhang B L, Zeng C Y et al. Laser processed Ni-Fe alloys as electrocatalyst toward oxygen evolution reaction[J]. Materials Research Express, 5, 066527(2018).

    [54] Koj M, Gimpel T, Schade W et al. Laser structured nickel-iron electrodes for oxygen evolution in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 44, 12671-12684(2019).

    [55] Cui X D, Zhang B L, Zeng C Y et al. Monolithic nanoporous NiFe alloy by dealloying laser processed NiFeAl as electrocatalyst toward oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 43, 15234-15244(2018).

    [56] Han X, Ye R Q, Chyan Y et al. Laser-induced graphene from wood impregnated with metal salts and use in electrocatalysis[J]. ACS Applied Nano Materials, 1, 5053-5061(2018).

    [57] Ren M Q, Zhang J B, Tour J M. Laser-induced graphene synthesis of Co3O4 in graphene for oxygen electrocatalysis and metal-air batteries[J]. Carbon, 139, 880-887(2018).

    [58] Zhang J B, Ren M Q, Li Y L et al. In situ synthesis of efficient water oxidation catalysts in laser-induced graphene[J]. ACS Energy Letters, 3, 677-683(2018).

    [59] Zhang J, Zhang C, Sha J et al. Efficient water-splitting electrodes based on laser-induced graphene[J]. ACS Applied Materials & Interfaces, 9, 26840-26847(2017).

    [60] Zhang J B, Ren M Q, Wang L Q et al. Oxidized laser-induced graphene for efficient oxygen electrocatalysis[J]. Advanced Materials, 30, 1707319(2018).

    [61] Ren M Q, Zhang J B, Tour J M. Laser-induced graphene hybrid catalysts for rechargeable Zn-air batteries[J]. ACS Applied Energy Materials, 2, 1460-1468(2019). http://pubs.acs.org/doi/10.1021/acsaem.8b02011

    [62] Deng H, Zhang C, Xie Y C et al. Laser induced MoS2/carbon hybrids for hydrogen evolution reaction catalysts[J]. Journal of Materials Chemistry A, 4, 6824-6830(2016).

    [63] Ou G, Fan P X, Ke X X et al. Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts[J]. Nano Research, 11, 751-761(2018).

    [64] Zuo P, Jiang L, Li X et al. Metal (Ag, Pt)-MoS2 hybrids greenly prepared through photochemical reduction of femtosecond laser pulses for SERS and HER[J]. ACS Sustainable Chemistry & Engineering, 6, 7704-7714(2018).

    [65] Li B, Jiang L, Li X et al. Controllable synthesis of nanosized amorphous MoSx using temporally shaped femtosecond laser for highly efficient electrochemical hydrogen production[J]. Advanced Functional Materials, 29, 1806229(2019).

    [66] Meng C, Lin M C, Du X W et al. Molybdenum disulfide modified by laser irradiation for catalyzing hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 7, 6999-7003(2019). http://www.researchgate.net/publication/331469426_Molybdenum_Disulfide_Modified_by_Laser_Irradiation_for_Catalyzing_Hydrogen_Evolution

    [67] Gao Z W, Liu M J, Zheng W R et al. Surface engineering of MoS2 via laser-induced exfoliation in protic solvents[J]. Small, 15, 1903791(2019).

    [68] Hung T F, Yin Z W, Betzler S B et al. Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors[J]. Chemical Engineering Journal, 367, 115-122(2019).

    [69] Johny J, Guzman S S, Krishnan B et al. SnS2 nanoparticles by liquid phase laser ablation: effects of laser fluence, temperature and post irradiation on morphology and hydrogen evolution reaction[J]. Applied Surface Science, 470, 276-288(2019). http://www.sciencedirect.com/science/article/pii/S0169433218332355

    [70] Zheng W J, Zhang Y, Niu K Y et al. Selective nitrogen doping of graphene oxide by laser irradiation for enhanced hydrogen evolution activity[J]. Chemical Communications, 54, 13726-13729(2018).

    [71] Chen C H, Wu D Y, Li Z et al. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution[J]. Advanced Energy Materials, 9, 1803913(2019).

    [72] Kang W J, Cheng C Q, Li Z et al. Ultrafine Ag nanoparticles as active catalyst for electrocatalytic hydrogen production[J]. ChemCatChem, 11, 5976-5981(2019).

    [73] Li Z, Fu J Y, Feng Y et al. A silver catalyst activated by stacking faults for the hydrogen evolution reaction[J]. Nature Catalysis, 2, 1107-1114(2019).

    [74] Volpato G A, Muneton Arboleda D, Brandiele R et al. Clean rhodium nanoparticles prepared by laser ablation in liquid for high performance electrocatalysis of the hydrogen evolution reaction[J]. Nanoscale Advances, 1, 4296-4300(2019).

    [75] Rauscher T, Müller C I, Gabler A et al. Femtosecond-laser structuring of Ni electrodes for highly active hydrogen evolution[J]. Electrochimica Acta, 247, 1130-1139(2017).

    [76] Gabler A, Müller C I, Rauscher T et al. Ultrashort-pulse laser structured titanium surfaces with sputter-coated platinum catalyst as hydrogen evolution electrodes for alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 43, 7216-7226(2018).

    [77] Cai M Y, Han J P, Lin Y et al. CoS2-incorporated WS2 nanosheets for efficient hydrogen production[J]. Electrochimica Acta, 287, 1-9(2018).

    [78] Cheng P F, Feng T, Liu Z W et al. Laser-direct-writing of 3D self-supported NiS2/MoS2 heterostructures as an efficient electrocatalyst for hydrogen evolution reaction in alkaline and neutral electrolytes[J]. Chinese Journal of Catalysis, 40, 1147-1152(2019).

    [79] Ye R Q, Peng Z W, Wang T et al. In situ formation of metal oxide nanocrystals embedded in laser-induced graphene[J]. ACS Nano, 9, 9244-9251(2015).

    [80] Nayak P, Jiang Q, Kurra N et al. Monolithic laser scribed graphene scaffolds with atomic layer deposited platinum for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 5, 20422-20427(2017).

    [81] Niu K Y, Fang L, Ye R et al. Tailoring transition-metal hydroxides and oxides by photon-induced reactions[J]. Angewandte Chemie International Edition, 55, 14272-14276(2016).

    [82] Niu K, Xu Y, Wang H et al. A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production[J]. Science Advances, 3, e1700921(2017).

    [83] Blakemore J D, Gray H B, Winkler J R et al. Co3O4 nanoparticle water-oxidation catalysts made by pulsed-laser ablation in liquids[J]. ACS Catalysis, 3, 2497-2500(2013).

    [84] Hunter B M, Hieringer W, Winkler J R et al. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity[J]. Energy & Environmental Science, 9, 1734-1743(2016).

    [85] Dong C, Liu Z W, Liu J Y et al. Modest oxygen-defective amorphous manganese-based nanoparticle mullite with superior overall electrocatalytic performance for oxygen reduction reaction[J]. Small, 13, 1603903(2017).

    [86] Hunter B M, Thompson N B, Müller A M et al. Trapping an iron(VI) water-splitting intermediate in nonaqueous media[J]. Joule, 2, 747-763(2018).

    [87] Liu J L, Zhu D D, Zheng Y et al. Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions[J]. ACS Catalysis, 8, 6707-6732(2018).

    [88] Xiao J. Designing and water electrolysis properties of transition metal based self-supported electrodes[D]. Wuhan: Huazhong University of Science and Technology(2018).

    [89] Fan P X, Pan R, Zhong M L. Ultrafast laser enabling hierarchical structures for versatile superhydrophobicity with enhanced Cassie-Baxter stability and durability[J]. Langmuir, 35, 16693-16711(2019). http://www.ncbi.nlm.nih.gov/pubmed/31782653

    [90] Fan P X, Zhong M L, Bai B F et al. Tuning the optical reflection property of metal surfaces via micro-nano particle structures fabricated by ultrafast laser[J]. Applied Surface Science, 359, 7-13(2015).

    [91] Long J Y, Fan P X, Zhong M L et al. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures[J]. Applied Surface Science, 311, 461-467(2014).

    [92] Mu X W, Wen Q H, Ou G et al. A current collector covering nanostructured villous oxygen-deficient NiO fabricated by rapid laser-scan for Li-O2 batteries[J]. Nano Energy, 51, 83-90(2018). http://www.sciencedirect.com/science/article/pii/S2211285518304397

    [93] Liang P, Zhang H J, Su Y B et al. In situ preparation.

    [94] Fan P X, Wu H, Zhong M L et al. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion[J]. Nanoscale, 8, 14617-14624(2016).

    [95] Fan P, Bai B, Zhong M et al. General strategy toward dual-scale-controlled metallic micro-nano hybrid structures with ultralow reflectance[J]. ACS Nano, 11, 7401-7408(2017).

    [96] Cai M, Fan P, Long J et al. Large-scale tunable 3D self-supporting WO3 micro-nano architectures as direct photoanodes for efficient photoelectrochemical water splitting[J]. ACS Applied Materials & Interfaces, 9, 17856-17864(2017).

    [97] Fan P, Bai B, Long J et al. Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface[J]. Nano Letters, 15, 5988-5994(2015).

    [98] Pan R, Cai M Y, Liu W J et al. Extremely high Cassie-Baxter state stability of superhydrophobic surfaces via precisely tunable dual-scale and triple-scale micro-nano structures[J]. Journal of Materials Chemistry A, 7, 18050-18062(2019).

    [99] Han J P, Cai M Y, Lin Y et al. 3D re-entrant nanograss on microcones for durable superamphiphobic surfaces via laser-chemical hybrid method[J]. Applied Surface Science, 456, 726-736(2018).

    [100] Long J Y, Fan P X, Gong D W et al. Ultrafast laser fabricated bio-inspired surfaces with special wettability[J]. Chinese Journal of Lasers, 43, 0800001(2016).

    [101] Pan R, Zhong M L. Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 64, 1268-1289(2019).

    [102] Niu S, Jiang W J, Wei Z X et al. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation[J]. Journal of the American Chemical Society, 141, 7005-7013(2019). http://www.ncbi.nlm.nih.gov/pubmed/30933480

    [103] Suryawanshi M P, Ghorpade U V, Shin S W et al. Hierarchically coupledni: FeOOH nanosheets on 3D N-doped graphite foam as self-supported electrocatalysts for efficient and durable water oxidation[J]. ACS Catalysis, 9, 5025-5034(2019).

    [104] Zou X X, Wu Y Y, Liu Y P et al. In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting[J]. Chem, 4, 1139-1152(2018).

    [105] Liu Y, Liang X, Gu L et al. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours[J]. Nature Communications, 9, 2609(2018).

    [106] Guo F F, Wu Y Y, Chen H et al. High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces[J]. Energy & Environmental Science, 12, 684-692(2019). http://pubs.rsc.org/en/content/articlelanding/2019/ee/c8ee03405b

    [107] Che Q J, Li Q, Tan Y et al. One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density[J]. Applied Catalysis B: Environmental, 246, 337-348(2019).

    Cai Mingyong, Jiang Guochen, Zhong Minlin. Laser Fabricated Electrodes with Micro-Nano Structures for Electrocatalytic Water Splitting[J]. Chinese Journal of Lasers, 2021, 48(2): 202008
    Download Citation