• Chinese Journal of Lasers
  • Vol. 48, Issue 2, 202008 (2021)
Cai Mingyong, Jiang Guochen, and Zhong Minlin*
Author Affiliations
  • Laser Materials Processing Research Center, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/CJL202148.0202008 Cite this Article Set citation alerts
    Cai Mingyong, Jiang Guochen, Zhong Minlin. Laser Fabricated Electrodes with Micro-Nano Structures for Electrocatalytic Water Splitting[J]. Chinese Journal of Lasers, 2021, 48(2): 202008 Copy Citation Text show less
    Schematic illustration of electrolysis of water[5]
    Fig. 1. Schematic illustration of electrolysis of water[5]
    Evaluation of catalytic activity. (a) Schematic illustration of polarization curve; (b) schematic illustration of Tafel slope
    Fig. 2. Evaluation of catalytic activity. (a) Schematic illustration of polarization curve; (b) schematic illustration of Tafel slope
    Several typical examples of the interaction between laser and solution. (a) Schematic illustration of the preparation process of transition metal hydroxides[22]; (b)(c) SEM images of transition metal hydroxides[22]; (d) overpotential values of transition metal hydroxides at time =0 and time =2h[22]; (e) schematic illustration of the preparation pro
    Fig. 3. Several typical examples of the interaction between laser and solution. (a) Schematic illustration of the preparation process of transition metal hydroxides[22]; (b)(c) SEM images of transition metal hydroxides[22]; (d) overpotential values of transition metal hydroxides at time =0 and time =2h[22]; (e) schematic illustration of the preparation pro
    Several typical examples of the interaction between laser and particles. (a) Schematic illustration of the synthesis of laser-fragmentated Co3O4; (b) structural modes for DFT calculation of laser-fragmentated Co3O4; (c) OER polarization curves of laser-fragmentated Co3O4</mr
    Fig. 4. Several typical examples of the interaction between laser and particles. (a) Schematic illustration of the synthesis of laser-fragmentated Co3O4; (b) structural modes for DFT calculation of laser-fragmentated Co3O4; (c) OER polarization curves of laser-fragmentated Co3O4
    Several typical examples of the interaction between laser and bulk targets. (a) Schematic illustration of the OER process of NiFe LDH[86]; (b) TEM image of NiO/NiFe LDH[40]; (c) OER polarization curves of NiO/NiFe LDH[40]; (d) structural models for DFT calculation of NiO/NiFe LDH[40]; (e) schematic
    Fig. 5. Several typical examples of the interaction between laser and bulk targets. (a) Schematic illustration of the OER process of NiFe LDH[86]; (b) TEM image of NiO/NiFe LDH[40]; (c) OER polarization curves of NiO/NiFe LDH[40]; (d) structural models for DFT calculation of NiO/NiFe LDH[40]; (e) schematic
    Schematic illustration of the structural and electrochemical features[14]. (a) Conventional powdery catalysts; (b) self-supported micro-nano electrode
    Fig. 6. Schematic illustration of the structural and electrochemical features[14]. (a) Conventional powdery catalysts; (b) self-supported micro-nano electrode
    Self-supported micro-nano structures fabricated by pulse laser. (a) Dispersive nanoparticles[90]; (b) nanoripples[91]; (c) fluff-like clusters[45]; (d) cauliflower-like aggregates[94]; (e) hierarchical micro-nano structures[95]; (f) nanowires[<x
    Fig. 7. Self-supported micro-nano structures fabricated by pulse laser. (a) Dispersive nanoparticles[90]; (b) nanoripples[91]; (c) fluff-like clusters[45]; (d) cauliflower-like aggregates[94]; (e) hierarchical micro-nano structures[95]; (f) nanowires[
    Several typical examples of self-supported catalytic electrodes with micro-nano structures directly fabricated by laser. (a) Polarization curves for overall water splitting of laser-ablated Ni plates[45]; (b) stability test of laser-ablated Ni plates[45]; (c) digital photograph of the overall water splitting device[45]; (d) SEM image of three-dimen
    Fig. 8. Several typical examples of self-supported catalytic electrodes with micro-nano structures directly fabricated by laser. (a) Polarization curves for overall water splitting of laser-ablated Ni plates[45]; (b) stability test of laser-ablated Ni plates[45]; (c) digital photograph of the overall water splitting device[45]; (d) SEM image of three-dimen
    Several typical examples of self-supported catalytic electrodes with micro-nano structures fabricated by laser hybrid with other chemical methods. (a)(b) SEM image and TEM image of CoS2/WS2 hybrid catalysts[77]; (c)(d) schematic illustration of the preparation process of NiO/CoFe LDH hierarchical nanostructures and polarization curves for overall water splitting[50]
    Fig. 9. Several typical examples of self-supported catalytic electrodes with micro-nano structures fabricated by laser hybrid with other chemical methods. (a)(b) SEM image and TEM image of CoS2/WS2 hybrid catalysts[77]; (c)(d) schematic illustration of the preparation process of NiO/CoFe LDH hierarchical nanostructures and polarization curves for overall water splitting[50]
    Feasibility verification of large-area preparation. (a)(b) Digital photograph of large-area sample and stability test of the mild steel electrode[46]; (c)--(f) digital photograph and SEM images of large-area sample, and two-electrode polarization curves[47]
    Fig. 10. Feasibility verification of large-area preparation. (a)(b) Digital photograph of large-area sample and stability test of the mild steel electrode[46]; (c)--(f) digital photograph and SEM images of large-area sample, and two-electrode polarization curves[47]
    CatalystTypeElectrolyteOverpotential (at currentdensity of 10 mA·cm-2)/mVTafel slope/(mV·dec-1)Ref.
    Amorphous Ni-Co-OHOER1mol·L-1 NaOH33774.65[22]
    Laser-ablated CoNiPO4OER1mol·L-1 KOH23846[23]
    Laser-fragmentated Co3O4OER1mol·L-1 KOH29474[24]
    Laser-fragmentated FeCo2O4OER1mol·L-1 KOH27661.6[25]
    Laser-fragmentated CoFe2O4OER1mol·L-1 KOH32071[26]
    CatalystTypeElectrolyteOverpotential (at current
    density of 10 mA·cm-2)
    /mV
    Tafel slope/
    (mV·dec-1)
    Ref.
    Laser-fragmentated CoOOER1mol·L-1 KOH36946[27]
    Laser-irradiated IrO2@IrOER1mol·L-1 KOH25545[28]
    NiCo2O4/NLGOER1mol·L-1 KOH31087.5[29]
    CoO/NLGOER1mol·L-1 KOH29576.4[30]
    N-doped CNTOER0.1mol·L-1 KOH36059[31]
    Co3O4-x/NGOER1mol·L-1 KOH35786.7[32]
    Ti/La-doped NiFe LDHOER1mol·L-1 KOH26044.7[33]
    PtCo/CoOxOER1mol·L-1 KOH38071.2[34]
    FeOx NPsOER0.2mol·L-1 phosphate buffer110[35]
    CoO NPsOER0.4mol·L-1 NaSO4128[36]
    Au0.89Fe0.11 nanoalloyOER1mol·L-1 KOH800163[37]
    Co0.75Ni0.25(OH)2 NSsOER1mol·L-1 KOH23556[38]
    CoO/CoFe LDHOER1mol·L-1 KOH25434[39]
    NiO/NiFe LDHOER1mol·L-1 KOH18030[40]
    Co3O4 NPsOER1mol·L-1 KOH27142[41]
    Ov-modified CoOOHOER1mol·L-1 KOH33063.2[42]
    Ir nanospheresOER0.5mol·L-1 H2SO426658.7[43]
    Laser-irradiated CoFe2O4OER1mol·L-1 NaOH460[44]
    NiO NPsOER1mol·L-1 KOH29441[45]
    Ni-doped Fe3O4 NPsOER1mol·L-1 KOH27239.4[46]
    3D Fe3O4 NPsOER1mol·L-1 KOH26235.0[47]
    Defect-rich NiFe-oxidesOER1mol·L-1 KOH22335.0[48]
    Micro/nano Cu-oxidesOER1mol·L-1 KOH63[49]
    Ni/NiO@CoFe LDHOER1mol·L-1 KOH23034.3[50]
    Cu/Cu-oxides/Co(OH)2OER1mol·L-1 KOH58[51]
    Laser-rusted stainless steelOER1mol·L-1 KOH38252[52]
    Laser-processed Ni6Fe4OER1mol·L-1 KOH464(at current density
    of 100 mA·cm-2)
    46[53]
    Laser-structured NiFe electrodeOER32.5% KOH(mass fraction)24939[54]
    Nanoporous NiFe alloyOER1mol·L-1 KOH44236[55]
    LIG-NiFeOER1mol·L-1 KOH29650[56]
    Co3O4/LIGOER0.1mol·L-1 KOH34040[57]
    NiFe/LIGOER1mol·L-1 KOH24032.8[58]
    LIG-NiFe
    LIG-Co-P
    OER1mol·L-1 KOH292
    364
    49
    84
    [59]
    Oxidized LIGOER1mol·L-1 KOH26049[60]
    LIG-CoNiFeOER0.1mol·L-1 KOH28741[61]
    Laser-induced MoS2/CHER0.5mol·L-1 H2SO421664[62]
    MoS2 QDsHER0.5mol·L-1 H2SO410853[63]
    Laser-reduced Pt-MoS2HER0.5mol·L-1 H2SO44125[64]
    Amorphous MoSxHER0.5mol·L-1 H2SO414540[65]
    CatalystTypeElectrolyteOverpotential (at current
    density of 10 mA·cm-2)
    /mV
    Tafel slope/
    (mV·dec-1)
    Ref.
    Laser-ablated MoS2HER0.5mol·L-1 H2SO417841.4[66]
    Laser-exfoliated MoS2HER0.5mol·L-1 H2SO418054[67]
    NiS nanostructuresHER1mol·L-1 KOH218[68]
    SnS2 NPsHER1mol·L-1 H2SO4115.8[69]
    Laser-induced NGOHER0.5mol·L-1 H2SO4>550133.81[70]
    Co0.75Ni0.25(OH)2 NSsHER1mol·L-1 KOH9585[38]
    RuAu single-atom alloyHER1mol·L-1 KOH2437[71]
    Ag NPsHER0.5mol·L-1 H2SO49676.1[72]
    Fault-stacked Ag NPsHER0.5mol·L-1 H2SO43231[73]
    Ir nanospheresHER0.5mol·L-1 H2SO42817.8[43]
    Rh NPsHER0.1mol·L-1 H2SO45755[74]
    NiO NPsHER1mol·L-1 KOH12188[45]
    Laser-structured NiHER29.9% KOH(mass fraction)280(at current density
    of 300 mA·cm-2)
    89[75]
    Laser-structured Ti/PtHER1mol·L-1 KOH158(at current density
    of 300 mA·cm-2)
    141[76]
    CoS2/WS2 hybridsHER0.5mol·L-1 H2SO411968[77]
    NiS2/MoS2
    heterostructures
    HER1mol·L-1 KOH
    1mol·L-1 phosphate buffer
    98
    157
    88
    109
    [78]
    Ni/NiO@CoFe LDHHER1mol·L-1 KOH10756.9[50]
    MoS2-LIGHER0.5mol·L-1 H2SO497[79]
    Pt/LSGHER0.5mol·L-1 H2SO413172[80]
    LIG-Pt
    LIG-Co-P
    HER1mol·L-1 KOH107
    141
    83
    54
    [59]
    Table 1. Summary of the catalytic activity of various catalysts based on laser micro-nano fabrication
    Cai Mingyong, Jiang Guochen, Zhong Minlin. Laser Fabricated Electrodes with Micro-Nano Structures for Electrocatalytic Water Splitting[J]. Chinese Journal of Lasers, 2021, 48(2): 202008
    Download Citation