• Journal of Semiconductors
  • Vol. 43, Issue 2, 022101 (2022)
Kin Fai Tse, Shengyuan Wang, Man Hoi Wong, and Junyi Zhu
Author Affiliations
  • Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
  • show less
    DOI: 10.1088/1674-4926/43/2/022101 Cite this Article
    Kin Fai Tse, Shengyuan Wang, Man Hoi Wong, Junyi Zhu. Defects properties and vacancy diffusion in Cu2MgSnS4[J]. Journal of Semiconductors, 2022, 43(2): 022101 Copy Citation Text show less
    References

    [1] S Y Chen, X G Gong, A Walsh et al. Crystal and electronic band structure of Cu2ZnSnX4 (X = S and Se) photovoltaic absorbers: First-principles insights. Appl Phys Lett, 94, 041903(2009).

    [2] J He, L Sun, S Y Chen et al. Composition dependence of structure and optical properties of Cu2ZnSn(S, Se)4 solid solutions: An experimental study. J Alloys Compd, 511, 129(2012).

    [3] S Levcenco, D Dumcenco, Y P Wang et al. Influence of anionic substitution on the electrolyte electroreflectance study of band edge transitions in single crystal Cu2ZnSn(SxSe1−x)4 solid solutions. Opt Mater, 34, 1362(2012).

    [4] C Persson. Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J Appl Phys, 107, 053710(2010).

    [5] W Wang, M T Winkler, O Gunawan et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv Energy Mater, 4, 1301465(2014).

    [6] C Yan, J L Huang, K W Sun et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat Energy, 3, 764(2018).

    [7] X L Liu, Y Feng, H T Cui et al. The current status and future prospects of kesterite solar cells: A brief review. Prog Photovolt: Res Appl, 24, 879(2016).

    [8] D M Bishop, B McCandless, T Gershon et al. Modification of defects and potential fluctuations in slow-cooled and quenched Cu2ZnSnSe4 single crystals. J Appl Phys, 121, 065704(2017).

    [9] S Zhuk, A Kushwaha, T K S Wong et al. Critical review on sputter-deposited Cu2ZnSnS4 (CZTS) based thin film photovoltaic technology focusing on device architecture and absorber quality on the solar cells performance. Sol Energy Mater Sol Cells, 171, 239(2017).

    [10] O Gunawan, T K Todorov, D B Mitzi. Loss mechanisms in hydrazine-processed Cu2ZnSn(Se, S)4 solar cells. Appl Phys Lett, 97, 233506(2010).

    [11] D Han, Y Y Sun, J Bang et al. Deep electron traps and origin of p-type conductivity in the earth-abundant solar-cell material Cu2ZnSnS4. Phys Rev B, 87, 155206(2013).

    [12] S Y Chen, A Walsh, X G Gong et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv Mater, 25, 1522(2013).

    [13] T Gokmen, O Gunawan, T K Todorov et al. Band tailing and efficiency limitation in kesterite solar cells. Appl Phys Lett, 103, 103506(2013).

    [14] M J Romero, H Du, G Teeter et al. Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In, Ga)Se2thin films used in photovoltaic applications. Phys Rev B, 84, 165324(2011).

    [15] G Rey, G Larramona, S Bourdais et al. On the origin of band-tails in kesterite. Sol Energy Mater Sol Cells, 179, 142(2018).

    [16] J J Li, D X Wang, X L Li et al. Cation substitution in earth-abundant kesterite photovoltaic materials. Adv Sci, 5, 1700744(2018).

    [17] K Pal, P Singh, A Bhaduri et al. Current challenges and future prospects for a highly efficient (>20%) kesterite CZTS solar cell: A review. Sol Energy Mater Sol Cells, 196, 138(2019).

    [18] A Kanevce, I Repins, S H Wei. Impact of bulk properties and local secondary phases on the Cu2(Zn, Sn)Se4 solar cells open-circuit voltage. Sol Energy Mater Sol Cells, 133, 119(2015).

    [19] V Kosyak, A V Postnikov, J Scragg et al. Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching. J Appl Phys, 122, 035707(2017).

    [20] D Huang, C Persson. Band gap change induced by defect complexes in Cu2ZnSnS4. Thin Solid Films, 535, 265(2013).

    [21] P Zawadzki, A Zakutayev, S Lany. Entropy-driven clustering in tetrahedrally bonded multinary materials. Phys Rev Appl, 3, 034007(2015).

    [22] J J S Scragg, L Choubrac, A Lafond et al. A low-temperature order-disorder transition in Cu2ZnSnS4 thin films. Appl Phys Lett, 104, 041911(2014).

    [23] B G Mendis, M C J Goodman, J D Major et al. The role of secondary phase precipitation on grain boundary electrical activity in Cu2ZnSnS4 (CZTS) photovoltaic absorber layer material. J Appl Phys, 112, 124508(2012).

    [24] W C Yang, C K Miskin, N J Carter et al. Compositional inhomogeneity of multinary semiconductor nanoparticles: A case study of Cu2ZnSnS4. Chem Mater, 26, 6955(2014).

    [25] J J Scragg, J T Wätjen, M Edoff et al. A detrimental reaction at the molybdenum back contact in Cu2ZnSn(S, Se)4 thin-film solar cells. J Am Chem Soc, 134, 19330(2012).

    [26] J J Scragg, T Kubart, J T Wätjen et al. Effects of back contact instability on Cu2ZnSnS4 devices and processes. Chem Mater, 25, 3162(2013).

    [27] G K Dalapati, S Zhuk, S Masudy-Panah et al. Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells. Sci Rep, 7, 1350(2017).

    [28] M Bär, B A Schubert, B Marsen et al. Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction. Appl Phys Lett, 99, 222105(2011).

    [29] A Nagaoka, H Miyake, T Taniyama et al. Effects of sodium on electrical properties in Cu2ZnSnS4 single crystal. Appl Phys Lett, 104, 152101(2014).

    [30] T Gershon, B Shin, N Bojarczuk et al. The role of sodium as a surfactant and suppressor of non-radiative recombination at internal surfaces in Cu2ZnSnS4. Adv Energy Mater, 5, 1400849(2015).

    [31] Y O Zhang, K Tse, X D Xiao et al. Controlling defects and secondary phases of CZTS by surfactant potassium. Phys Rev Mater, 1, 045403(2017).

    [32] C Yan, F Y Liu, N Song et al. Band alignments of different buffer layers (CdS, Zn(O, S), and In2S3) on Cu2ZnSnS4. Appl Phys Lett, 104, 173901(2014).

    [33] K W Sun, C Yan, F Y Liu et al. Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1–xCdxS buffer layer. Adv Energy Mater, 6, 1600046(2016).

    [34] X L Li, Z H Su, S Venkataraj et al. 8.6% Efficiency CZTSSe solar cell with atomic layer deposited Zn-Sn-O buffer layer. Sol Energy Mater Sol Cells, 157, 101(2016).

    [35] J J Li, X R Liu, W Liu et al. Restraining the band fluctuation of CBD-Zn(O, S) layer: Modifying the hetero-junction interface for high performance Cu2ZnSnSe4 solar cells with Cd-free buffer layer. Sol RRL, 1, 1700075(2017).

    [36] H T Cui, X L Liu, F Y Liu et al. Boosting Cu2ZnSnS4 solar cells efficiency by a thin Ag intermediate layer between absorber and back contact. Appl Phys Lett, 104, 041115(2014).

    [37] F Y Liu, K W Sun, W Li et al. Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: Inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface. Appl Phys Lett, 104, 051105(2014).

    [38] X L Liu, H T Cui, W Li et al. Improving Cu2ZnSnS4 (CZTS) solar cell performance by an ultrathin ZnO intermediate layer between CZTS absorber and Mo back contact. Phys Status Solidi RRL, 8, 966(2014).

    [39] Z F Tong, K Zhang, K W Sun et al. Modification of absorber quality and Mo-back contact by a thin Bi intermediate layer for kesterite Cu2ZnSnS4 solar cells. Sol Energy Mater Sol Cells, 144, 537(2016).

    [40] Y C Gu, H P Shen, C Ye et al. All-solution-processed Cu2ZnSnS4 solar cells with self-depleted Na2S back contact modification layer. Adv Funct Mater, 28, 1703369(2018).

    [41] C C Wang, S Y Chen, J H Yang et al. Design of I2–II–IV–VI4 semiconductors through element substitution: The thermodynamic stability limit and chemical trend. Chem Mater, 26, 3411(2014).

    [42] G H Zhong, K Tse, Y O Zhang et al. Induced effects by the substitution of Zn in Cu2ZnSnX4 (X = S and Se). Thin Solid Films, 603, 224(2016).

    [43] Z K Yuan, S Y Chen, H J Xiang et al. Engineering solar cell absorbers by exploring the band alignment and defect disparity: The case of Cu- and Ag-based kesterite compounds. Adv Funct Mater, 25, 6733(2015).

    [44] Y F Qi, D X Kou, W H Zhou et al. Engineering of interface band bending and defects elimination via a Ag-graded active layer for efficient (Cu, Ag)2ZnSn(S, Se)4 solar cells. Energy Environ Sci, 10, 2401(2017).

    [45] Z H Su, J M R Tan, X L Li et al. Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency. Adv Energy Mater, 5, 1500682(2015).

    [46] S Bag, O Gunawan, T Gokmen et al. Hydrazine-processed Ge-substituted CZTSe solar cells. Chem Mater, 24, 4588(2012).

    [47] A D Collord, H W Hillhouse. Germanium alloyed kesterite solar cells with low voltage deficits. Chem Mater, 28, 2067(2016).

    [48] M Wei, Q Y Du, R Wang et al. Synthesis of new earth-abundant kesterite Cu2MgSnS4 nanoparticles by hot-injection method. Chem Lett, 43, 1149(2014).

    [49] G L Agawane, S A Vanalakar, A S Kamble et al. Fabrication of Cu2(ZnxMg1–x)SnS4 thin films by pulsed laser deposition technique for solar cell applications. Mater Sci Semicond Process, 76, 50(2018).

    [50] G Yang, X L Zhai, Y F Li et al. Synthesis and characterizations of Cu2MgSnS4 thin films with different sulfuration temperatures. Mater Lett, 242, 58(2019).

    [51] R Caballero, S G Haass, C Andres et al. Effect of magnesium incorporation on solution-processed kesterite solar cells. Front Chem, 6, 5(2018).

    [52] S Lie, S W Leow, D M Bishop et al. Improving carrier-transport properties of CZTS by Mg incorporation with spray pyrolysis. ACS Appl Mater Interfaces, 11, 25824(2019).

    [53] S Y Chen, J H Yang, X G Gong et al. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys Rev B, 81, 245204(2010).

    [54] Y Hinuma, A Grüneis, G Kresse et al. Band alignment of semiconductors from density-functional theory and many-body perturbation theory. Phys Rev B, 90, 155405(2014).

    [55] S H Wei. Overcoming the doping bottleneck in semiconductors. Comput Mater Sci, 30, 337(2004).

    [56] C Freysoldt, J Neugebauer, C G van de Walle. Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys Rev Lett, 102, 016402(2009).

    [57] S Y Chen, X G Gong, A Walsh et al. Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds. Phys Rev B, 79, 165211(2009).

    [58] J Y Zhu, F Liu, G B Stringfellow et al. Strain-enhanced doping in semiconductors: Effects of dopant size and charge state. Phys Rev Lett, 105, 195503(2010).

    [59] H Hu, M Liu, Z F Wang et al. Quantum electronic stress: Density-functional-theory formulation and physical manifestation. Phys Rev Lett, 109, 055501(2012).

    [60] R Noufi, R Axton, C Herrington et al. Electronic properties versus composition of thin films of CuInSe2. Appl Phys Lett, 45, 668(1984).

    [61] W Xiao, J N Wang, X S Zhao et al. Intrinsic defects and Na doping in Cu2ZnSnS4: A density-functional theory study. Sol Energy, 116, 125(2015).

    [62] G Henkelman, B P Uberuaga, H Jónsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys, 113, 9901(2000).

    [63] J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett, 77, 3865(1996).

    [64] S Nakamura, T Maeda, T Wada. First-principles study of diffusion of Cu and in atoms in CuInSe2. Jpn J Appl Phys, 52, 04CR01(2013).

    Kin Fai Tse, Shengyuan Wang, Man Hoi Wong, Junyi Zhu. Defects properties and vacancy diffusion in Cu2MgSnS4[J]. Journal of Semiconductors, 2022, 43(2): 022101
    Download Citation