• Laser & Optoelectronics Progress
  • Vol. 61, Issue 24, 2412004 (2024)
Fei Liu1, Yanfen Zhong1,2,3,*, and Jiawei Qiu1
Author Affiliations
  • 1School of Civil Engineering and Transportation, Nanchang Hangkong University, Nanchang 330063, Jiangxi , China
  • 2Jiangxi Intelligent Building Engineering Research Centre, Nanchang 330063, Jiangxi , China
  • 3Nanchang Hangkong University Intelligent Construction Research Centre, Nanchang 330063, Jiangxi , China
  • show less
    DOI: 10.3788/LOP240672 Cite this Article Set citation alerts
    Fei Liu, Yanfen Zhong, Jiawei Qiu. Lightweight Traffic Sign Recognition and Detection Algorithm Based on Improved YOLOv5s[J]. Laser & Optoelectronics Progress, 2024, 61(24): 2412004 Copy Citation Text show less
    References

    [1] Li Y J. Analysis on the influence of road traffic safety facilities on traffic safety[J]. Police Technology, 88-90(2014).

    [2] Han Z B. Research on traffic sign recognition based on improved YOLOv3[D](2022).

    [3] William M M, Zaki P S, Soliman B K et al. Traffic signs detection and recognition system using deep learning[C], 160-166(2019).

    [4] Wu X H, Tian Q C. Survey of traffic sign recognition[J]. Computer Engineering and Applications, 56, 20-26(2020).

    [5] Liu H H, Fan Y M, He H Q et al. Improved YOLOv7-tiny’s object detection lightweight model[J]. Computer Engineering and Applications, 59, 166-175(2023).

    [6] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [7] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767

    [8] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. https://arxiv.org/abs/2004.10934

    [9] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Computer vision-ECCV 2016, 9905, 21-37(2016).

    [10] Tong Y, Yang H C. Traffic sign recognition based on improved neural networks[J]. Laser & Optoelectronics Progress, 56, 191002(2019).

    [11] Jiang J H, Bao S L, Shi W X et al. Improved traffic sign recognition algorithm based on YOLO v3 algorithm[J]. Journal of Computer Applications, 40, 2472-2478(2020).

    [12] Chen M T, Yu S. Research on traffic sign recognition based on improved YOLOV4 model[J]. Microelectronics & Computer, 39, 17-25(2022).

    [13] Ultralytics. YOLOv5[EB/OL]. https://github.com/ultralytics/yolov5

    [14] Zhang J, Huang M, Jin X et al. A real-time Chinese traffic sign detection algorithm based on modified YOLOv2[J]. Algorithms, 10, 127(2017).

    [15] Srinivas A, Lin T Y, Parmar N et al. Bottleneck transformers for visual recognition[C], 16514-16524(2021).

    [16] Wang Q L, Wu B G, Zhu P F et al. ECA-net: efficient channel attention for deep convolutional neural networks[C], 11531-11539(2020).

    [17] Ma S L, Xu Y, Ma S L et al. MPDIoU: a loss for efficient and accurate bounding box regression[EB/OL]. http://arxiv.org/abs/2307.07662v1

    [18] Chen F, Liu Y P, Li S Y. Survey of traffic sign detection and recognition methods in complex environment[J]. Computer Engineering and Applications, 57, 65-73(2021).

    [19] Vaswani A, Shazeer N, Parmar N et al. Attention is all you need[EB/OL]. https://arxiv.org/abs/1706.03762

    [20] Yang J W, Li C Y, Zhang P C et al. Focal self-attention for local-global interactions in vision transformers[EB/OL]. https://arxiv.org/abs/2107.00641

    [21] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [22] Qi X H, Zhi M. Review of attention mechanisms in image processing[J]. Journal of Frontiers of Computer Science and Technology, 18, 345-362(2024).

    [23] Huang J F. Cross-project software defect prediction based on machine learning[D](2021).

    [24] Tang Y H, Han K, Guo J Y et al. GhostNetV2: enhance cheap operation with long-range attention[EB/OL]. http://arxiv.org/abs/2211.12905v1

    [25] Han K, Wang Y H, Tian Q et al. GhostNet: more features from cheap operations[C], 1577-1586(2020).

    [26] Wang H Y, Wang C P, Fu Q et al. Lightweight ship detection based on optical remote sensing images for embedded platform[J]. Acta Optica Sinica, 43, 1212001(2023).

    [27] Li J N, Liang X D, Wei Y C et al. Perceptual generative adversarial networks for small object detection[C], 1951-1959(2017).

    [28] He Z F, Chen G C, Chen J S et al. Multi-scale feature fusion lightweight real-time infrared pedestrian detection at night[J]. Chinese Journal of Lasers, 49, 1709002(2022).

    [29] Ma W L, Peng X, Xiong Q et al. Memory management in deep learning: a survey[J]. Big Data Research, 6, 56-68(2020).

    [30] Yu J H, Jiang Y N, Wang Z Y et al. UnitBox: an advanced object detection network[C], 516-520(2016).

    [31] Song W Z, Suandi S A. TSR-YOLO: a Chinese traffic sign recognition algorithm for intelligent vehicles in complex scenes[J]. Sensors, 23, 749(2023).

    [32] Li X, He M, Luo H B. Occluded pedestrian detection algorithm based on improved YOLOv3[J]. Acta Optica Sinica, 42, 1415003(2022).

    [33] Zhou Q K, Zhang W, Li D J et al. Ship classification and detection method for optical remote sensing images based on improved YOLOv5s[J]. Laser & Optoelectronics Progress, 59, 1628008(2022).

    [34] Cheng S, Dai J T, Yang H G et al. Weld image detection and recognition based on improved YOLOv4[J]. Laser & Optoelectronics Progress, 59, 1610002(2022).

    [35] Wang Z F, Zhu H, Dong Z H et al. Less is better: unweighted data subsampling via influence function[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 6340-6347(2020).

    [36] Lee K, Ippolito D, Nystrom A et al. Deduplicating training data makes language models better[EB/OL]. http://arxiv.org/abs/2107.06499v2

    Fei Liu, Yanfen Zhong, Jiawei Qiu. Lightweight Traffic Sign Recognition and Detection Algorithm Based on Improved YOLOv5s[J]. Laser & Optoelectronics Progress, 2024, 61(24): 2412004
    Download Citation