[1] C. Basu, M. Meinhardt-Wollweber, B. Roth. Lighting with laser diodes. Adv. Opt. Technol., 2, 313(2013).
[2] S. Li, Y. Guo, R.-J. Xie. Laser phosphors for next-generation lighting applications. Acc. Mater. Res., 3, 1299(2022).
[3] C. Cozzan, G. Lheureux, N. O’Dea et al. Stable, heat-conducting phosphor composites for high-power laser lighting. ACS Appl. Mater. Interfaces, 10, 5673(2018).
[4] J. Vetrovec, D. A. Copeland, R. Feeler et al. Testing of an active heat sink for advanced high-power laser diodes. Proc. SPIE, 7918, 79180G(2011).
[5] A. Korpel, R. Adler, P. Desmares et al. A television display using acoustic deflection and modulation of coherent light. Appl. Opt., 5, 1667(1966).
[6] Y. Hou, Z. Zhou, C. Zhang et al. Full-color flexible laser displays based on random laser arrays. Sci. China Mater., 64, 2805(2021).
[7] K. V. Chellappan, E. Erden, H. Urey. Laser-based displays: a review. Appl. Opt., 49, F79(2010).
[8] X. Zhan, F.-F. Xu, Z. Zhou et al. 3D laser displays based on circularly polarized lasing from cholesteric liquid crystal arrays. Adv. Mater., 33, 2104418(2021).
[9] M. A. Khalighi, M. Uysal. Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor., 16, 2231(2014).
[10] C.-T. Tsai, C.-H. Cheng, H.-C. Kuo et al. Toward high-speed visible laser lighting based optical wireless communications. Prog. Quantum Electron., 67, 100225(2019).
[11] E. Ciaramella, G. Cossu, E. Ertunc et al. Prospects of visible light communications in satellites. 22nd International Conference on Transparent Optical Networks (ICTON), 1(2020).
[12] H. Haas. Wireless Data from Every Light Bulb(2011).
[13] K. T. Swami, A. A. Moghe. A review of LiFi technology. 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), 1(2020).
[14] X. Bao, G. Yu, J. Dai et al. Li-Fi: light fidelity-a survey. Wireless Netw., 21, 1879(2015).
[15] H. Haas, L. Yin, Y. Wang et al. What is LiFi?. J. Lightwave Technol., 34, 1533(2016).
[16] X. Wu, M. D. Soltani, L. Zhou et al. Hybrid LiFi and WiFi networks: a survey. IEEE Commun. Surv. Tutor., 23, 1398(2021).
[17] R. N. Hall, G. E. Fenner, J. D. Kingsley et al. Coherent light emission from GaAs junctions. Phys. Rev. Lett., 9, 366(1962).
[18] R. Hashimoto, H. Hung, J. Hwang et al. High-power 2.8 W blue-violet laser diode for white light sources. Opt. Rev., 19, 412(2012).
[19] Y. Hirano, Y. Tani, M. Ishida et al. 49-1: Invited paper: red, green and blue laser diodes for display applications. SID Symposium Digest of Technical Papers, 673(2021).
[20] S. Kimura, H. Yoshida, K. Uesugi et al. Performance enhancement of blue light-emitting diodes with InGaN/GaN multi-quantum wells grown on Si substrates by inserting thin AlGaN interlayers. J. Appl. Phys., 120, 113104(2016).
[21] J. Piprek. Energy efficiency analysis of GaN-based blue light emitters. ECS J. Solid State Sci. Technol., 9, 015008(2020).
[22] S. Masui, Y. Nakatsu, D. Kasahara et al. Recent improvement in nitride lasers. Gallium Nitride Materials and Devices XII, 161(2017).
[23] Y. Nakatsu, Y. Nagao, K. Kozuru et al. High-efficiency blue and green laser diodes for laser displays. Gallium Nitride Materials and Devices XIV, 99(2019).
[24] Y. Nakatsu, Y. Nagao, T. Hirao et al. Blue and green InGaN semiconductor lasers as light sources for displays. Gallium Nitride Materials and Devices XV, 81(2020).
[25] Y. Nakatsu, Y. Nagao, T. Hirao et al. Edge-emitting blue laser diode with high CW wall-plug efficiency of 50%. Gallium Nitride Materials and Devices XVII, 58(2022).
[26] Y. Nakatsu, T. Hirao, T. Morizumi et al. Blue and green edge-emitting laser diodes and vertical-cavity surface emitting lasers on C-plane GaN substrates. Gallium Nitride Materials and Devices XVIII, 102(2023).
[27] M. Murayama, Y. Nakayama, K. Yamazaki et al. Watt-class green (530 nm) and blue (465 nm) laser diodes. Phys. Status Solidi A, 215, 1700513(2018).
[28] J. Wang, J. Hu, C. Guan et al. High-speed GaN-based laser diode with modulation bandwidth exceeding 5 GHz for 20 Gbps visible light communication. Photon. Res., 12, 1186(2024).
[29] L. Hu, X. Ren, J. Liu et al. High-power hybrid GaN-based green laser diodes with ITO cladding layer. Photon. Res., 8, 279(2020).
[30] T. Kozaki, H. Matsumura, Y. Sugimoto et al. High-power and wide wavelength range GaN-based laser diodes. Proc. SPIE, 6133, 613306(2006).
[31] L. Jiang, J. Liu, A. Tian et al. GaN-based green laser diodes. J. Semicond., 37, 111001(2016).
[32] H. Ohta, S. P. DenBaars, S. Nakamura. Future of group-III nitride semiconductor green laser diodes. J. Opt. Soc. Am. B, 27, B45(2010).
[33] T. Nakamura. Recent progress of green laser diodes. Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR), 1(2013).
[34] S. Lutgen, A. Avramescu, T. Lermer et al. True green InGaN laser diodes. Phys. Status Solidi A, 207, 1318(2010).
[35] S. Lutgen, D. Dini, I. Pietzonka et al. Recent results of blue and green InGaN laser diodes for laser projection. Proc. SPIE, 7953, 79530G(2011).
[36] Z. Lu, J. Cai, Z. Xu et al. 11.2 Gbps 100-meter free-space visible light laser communication utilizing bidirectional reservoir computing equalizer. Opt. Express, 31, 44315(2023).
[37] S. Kawanaak, S. Kitamura, S. Miyamoto et al. 71-2: Invited paper: high power red laser diodes for display applications. SID Symposium Digest of Technical Papers, 953(2022).
[38] J. Hu, F. Hu, J. Jia et al. 46.4 Gbps visible light communication system utilizing a compact tricolor laser transmitter. Opt. Express, 30, 4365(2022).
[39] M. Hagimoto, S. Miyamoto, K. Watanabe et al. Red laser diodes explore the future of biomedical and quantum technology. Proc. SPIE, 12440, 124400M(2023).
[40] S. Uchida, M. Takeya, S. Ikeda et al. Recent progress in high-power blue-violet lasers. IEEE J. Sel. Top. Quantum Electron., 9, 1252(2003).
[41] Y. Xu, H. Hu, W. Zhuang et al. White light emission from ultraviolet laser diode. Laser Phys., 19, 403(2009).
[42] Y. Narukawa, I. Niki, K. Izuno et al. Phosphor-conversion white light emitting diode using InGaN near-ultraviolet chip. Jpn. J. Appl. Phys., 41, L371(2002).
[43] J. W. Raring, P. Rudy, E. Goutain et al. High-power GaN-based laser diodes for next generation applications. Proceeding of the International Conference on Compound Semiconductor Manufacturing Technology (CS MANTECH 2022), 9(2022).
[44] S. Muthu, F. J. Schuurmans, M. D. Pashley. Red, green, and blue LEDs for white light illumination. IEEE J. Sel. Top. Quantum Electron., 8, 333(2002).
[45] K. A. Denault, M. Cantore, S. Nakamura et al. Efficient and stable laser-driven white lighting. AIP Adv., 3, 072107(2013).
[46] A. Neumann, J. J. Wierer, W. Davis et al. Four-color laser white illuminant demonstrating high color-rendering quality. Opt. Express, 19, A982(2011).
[47] B. Janjua, T. K. Ng, C. Zhao et al. Health-friendly high-quality white light using violet-green-red laser and InGaN nanowires-based true yellow nanowires light-emitting diodes. Gallium Nitride Materials and Devices XII, 88(2017).
[48] F. Fan, S. Turkdogan, Z. Liu et al. A monolithic white laser. Nat. Nanotechnol., 10, 796(2015).
[49] Y. Wang, H. Wang, O. Alkhazragi et al. Two-dimensional hybrid organic-inorganic perovskite nanosheets for Gb/s visible-light communication. IEEE Photon. Technol. Lett., 34, 753(2022).
[50] J. X. Wang, Y. Wang, I. Nadinov et al. Metal-organic frameworks in mixed-matrix membranes for high-speed visible-light communication. J. Am. Chem. Soc., 144, 6813(2022).
[51] J.-X. Wang, Y. Wang, I. Nadinov et al. Aggregation-induced fluorescence enhancement for efficient X-ray imaging scintillators and high-speed optical wireless communication. ACS Mater. Lett., 4, 1668(2022).
[52] M. Cantore, N. Pfaff, R. M. Farrell et al. High luminous flux from single crystal phosphor-converted laser-based white lighting system. Opt. Express, 24, A215(2016).
[53] X. Li, Z. Tong, W. Lyu et al. Underwater quasi-omnidirectional wireless optical communication based on perovskite quantum dots. Opt Express, 30, 1709(2022).
[54] T. K. Ng, J. A. Holguin-Lerma, C. H. Kang et al. Group-III-nitride and halide-perovskite semiconductor gain media for amplified spontaneous emission and lasing applications. J. Phys. D, 54, 143001(2021).
[55] I. Papakonstantinou, M. Portnoi, M. G. Debije. The hidden potential of luminescent solar concentrators. Adv. Energy Mater., 11, 2002883(2020).
[56] G. L. Yang, X. L. Jiang, H. Xu et al. Applications of MOFs as luminescent sensors for environmental pollutants. Small, 17, e2005327(2021).
[57] I. Dursun, C. Shen, M. R. Parida et al. Perovskite nanocrystals as a color converter for visible light communication. ACS Photonics, 3, 1150(2016).
[58] C. H. Kang, I. Dursun, G. Liu et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light Sci. Appl., 8, 94(2019).
[59] C. H. Kang, Y. Wang, O. Alkhazragi et al. Down-converting luminescent optoelectronics and their applications. APL Photonics, 8, 020903(2023).
[60] Y. Wang, H. Wang, O. Alkhazragi et al. Fast-acting halide-perovskite-based RGB fluorescent materials for aggregate Gb/s visible light communication. Proc. SPIE, 12417, 124170D(2023).
[61] J. X. Wang, Y. Wang, M. Almalki et al. Engineering metal-organic frameworks with tunable colors for high-performance wireless communication. J. Am. Chem. Soc., 145, 15435(2023).
[62] M. Sait, A. Trichili, O. Alkhazragi et al. Dual-wavelength luminescent fibers receiver for wide field-of-view, Gb/s underwater optical wireless communication. Opt. Express, 29, 38014(2021).
[63] Y. Guo, M. Kong, M. Sait et al. Compact scintillating-fiber/450-nm-laser transceiver for full-duplex underwater wireless optical communication system under turbulence. Opt. Express, 30, 53(2022).
[64] C. H. Kang, A. Trichili, O. Alkhazragi et al. Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication. Opt. Express, 27, 30450(2019).
[65] C. H. Kang, O. Alkhazragi, L. Sinatra et al. All-inorganic halide-perovskite polymer-fiber-photodetector for high-speed optical wireless communication. Opt. Express, 30, 9823(2022).
[66] Y. Wang, J. X. Wang, O. Alkhazragi et al. Multifunctional difluoroboron beta-diketonate-based luminescent receiver for a high-speed underwater wireless optical communication system. Opt. Express, 31, 32516(2023).
[67] J. Kinoshita, Y. Ikeda, Y. Takeda et al. Suppressed speckle contrast of blue light emission out of white lamp with phosphors excited by blue laser diodes for high-brightness lighting applications. Opt. Rev., 19, 427(2012).
[68] N. Chi, Y. Zhou, Y. Wei et al. Visible light communication in 6G: advances, challenges, and prospects. IEEE Veh. Technol. Mag., 15, 93(2020).
[69] B. Janjua, H. M. Oubei, J. R. D. Retamal et al. Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication. Opt. Express, 23, 18746(2015).
[70] D. Tsonev, S. Videv, H. Haas. Towards a 100 Gb/s visible light wireless access network. Opt. Express, 23, 1627(2015).
[71] T.-C. Wu, Y.-C. Chi, H.-Y. Wang et al. Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s. Sci. Rep., 7, 11(2017).
[72] Y.-F. Huang, Y.-C. Chi, M.-K. Chen et al. Red/green/blue LD mixed white-light communication at 6500 K with divergent diffuser optimization. Opt. Express, 26, 23397(2018).
[73] L.-Y. Wei, C.-W. Hsu, Y. Hsu et al. 20 Gbit/s tricolor R/G/B laser diode based bi-directional signal remodulation visible light communication system. Optical Fiber Communication Conference, M3K. 2(2018).
[74] H. Chun, A. Gomez, C. Quintana et al. A wide-area coverage 35 Gb/s visible light communications link for indoor wireless applications. Sci. Rep., 9, 4952(2019).
[75] W.-C. Wang, C.-H. Cheng, H.-Y. Wang et al. White-light color conversion with red/green/violet laser diodes and yellow light-emitting diode mixing for 34.8 Gbit/s visible lighting communication. Photon. Res., 8, 1398(2020).
[76] L. Issaoui, S. Cho, H. Chun. High CRI RGB laser lighting with 11-Gb/s WDM link using off-the-shelf phosphor plate. IEEE Photon. Technol. Lett., 34, 97(2022).
[77] Z. Luo, X. Lin, Z. Lu et al. Over 100 Gbps Free-space laser-based visible light communication system based on 10-λ WDM module. European Conference on Optical Communications, Tu.A.4.4(2023).
[78] Z. Luo, X. Lin, Z. Lu et al. 113 Gbps rainbow visible light laser communication system based on 10λ laser WDM emitting module in fiber-free space-fiber link. Opt. Express, 32, 2561(2024).
[79] Z. Xu, X. Lin, Z. Luo et al. Flexible 2 × 2 multiple access visible light communication system based on an integrated parallel GaN/InGaN micro-photodetector array module. Photon. Res., 12, 793(2024).
[80] S. Nakamura, M. Senoh, S. I. Nagahama et al. Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes. Appl. Phys. Lett., 69, 4056(1996).
[81] B. Wozniak, J. Dera. Light Absorption in Sea Water(2007).
[82] X. Sun, W. Cai, O. Alkhazragi et al. 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication. Opt. Express, 26, 12870(2018).
[83] X. Sun, M. Kong, O. A. Alkhazragi et al. Field demonstrations of wide-beam optical communications through water–air interface. IEEE Access, 8, 160480(2020).
[84] Y. Weng, Y. Sekimori, S. Chun et al. A scalable laser-based underwater wireless optical communication solution between autonomous underwater vehicle fleets. Appl. Opt., 62, 8261(2023).
[85] M. Kong, J. Lin, Y. Guo et al. AquaE-lite hybrid-solar-cell receiver-modality for energy-autonomous terrestrial and underwater internet-of-things. IEEE Photonics J., 12, 7904713(2020).
[86] O. Alkhazragi, X. Sun, V. Zuba et al. Spectrally resolved characterization of thermally induced underwater turbulence using a broadband white-light interrogator. IEEE Photonics J., 11, 7905609(2019).
[87] Y. Weng, Y. Guo, O. Alkhazragi et al. Impact of turbulent-flow-induced scintillation on deep-ocean wireless optical communication. J. Lightwave Technol., 37, 5083(2019).
[88] H. M. Oubei, E. Zedini, R. T. ElAfandy et al. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems. Opt. Lett., 42, 2455(2017).
[89] E. Zedini, H. M. Oubei, A. Kammoun et al. Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems. IEEE Trans. Commun., 67, 2893(2019).
[90] J. Hu, Z. Guo, J. Shi et al. A metasurface-based full-color circular auto-focusing Airy beam transmitter for stable high-speed underwater wireless optical communications. Nat. Commun., 15, 2944(2024).
[91] X. Liu, S. Yi, X. Zhou et al. Laser-based white-light source for high-speed underwater wireless optical communication and high-efficiency underwater solid-state lighting. Opt. Express, 26, 19259(2018).
[92] C.-Y. Li, H.-H. Lu, W.-S. Tsai et al. A 5 m/25 Gbps underwater wireless optical communication system. IEEE Photonics J., 10, 7904909(2018).
[93] J. Wang, C. Lu, S. Li et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode. Opt. Express, 27, 12171(2019).
[94] W. S. Tsai, H. H. Lu, H. W. Wu et al. A 30 Gb/s PAM4 underwater wireless laser transmission system with optical beam reducer/expander. Sci. Rep., 9, 8605(2019).
[95] J. H. Araújo, R. Kraemer, J. S. Tavares et al. 5.36 Gbit/s OFDM optical wireless communication link over the underwater channel. 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)(2020).
[96] X. Chen, W. Lyu, Z. Zhang et al. 56-m/3.31-Gbps underwater wireless optical communication employing Nyquist single carrier frequency domain equalization with noise prediction. Opt. Express, 28, 23784(2020).
[97] X. Yang, Z. Tong, Y. Dai et al. 100 m full-duplex underwater wireless optical communication based on blue and green lasers and high sensitivity detectors. Opt. Commun., 498, 127261(2021).
[98] C. Tu, W. Liu, W. Jiang et al. First demonstration of 1 Gb/s PAM4 signal transmission over a 130 m underwater optical wireless communication channel with digital equalization. IEEE/CIC International Conference on Communications in China (ICCC)(2021).
[99] J. Du, Y. Wang, C. Fei et al. Experimental demonstration of 50-m/5-Gbps underwater optical wireless communication with low-complexity chaotic encryption. Opt. Express, 29, 783(2021).
[100] X. Hong, J. Du, Y. Wang et al. Experimental demonstration of 55-m/2-Gbps underwater wireless optical communication using SiPM diversity reception and nonlinear decision-feedback equalizer. IEEE Access, 10, 47814(2022).
[101] Z. Du, W. Ge, C. Cai et al. 90-m/660-Mbps underwater wireless optical communication enabled by interleaved single-carrier FDM scheme combined with sparse weight-initiated DNN equalizer. J. Lightwave Technol., 41, 5310(2023).
[102] B. Yu, S. Liang, X. Ding et al. A sandwich structure light-trapping fluorescence antenna with large field of view for visible light communication. IEEE Trans. Electron Devices, 68, 565(2020).
[103] O. Alkhazragi, A. Trichili, I. Ashry et al. Wide-field-of-view optical detectors using fused fiber-optic tapers. Opt. Lett., 46, 1916(2021).
[104] Y. Hou, C. Ma, D. Li et al. 3 Gbit/s wide field-of-view visible light communication system based on white laser diode. Asia Communications and Photonics Conference, M5B. 2(2021).
[105] C. Ma, Y. Hou, L. Zha et al. A large field-of-view (FOV) visible laser light communication system reaching 180° with silicon photomultiplier receiver. 19th China International Forum on Solid State Lighting & 2022 8th International Forum on Wide Bandgap Semiconductors (SSLCHINA: IFWS), 285(2023).
[106] J. Zhao, Y. Liu, T. Xu. Advanced DSP for coherent optical fiber communication. Appl. Sci., 9, 4192(2019).
[107] S. Huang, C. Chen, R. Bian et al. 5 Gbps optical wireless communication using commercial SPAD array receivers. Opt. Lett., 47, 2294(2022).
[108] B. Cao, K. Yuan, H. Li et al. The performance improvement of VLC-OFDM system based on reservoir computing. Photonics, 9, 185(2022).
[109] C.-X. Wang, X. You, X. Gao et al. On the road to 6G: visions, requirements, key technologies and testbeds. IEEE Commun. Surv. Tutor., 25, 905(2023).
[110] W. Jiang, B. Han, M. A. Habibi et al. The road towards 6G: a comprehensive survey. IEEE Open J. Commun. Soc., 2, 334(2021).
[111] M. Werkstetter, S. Weber, F. Hirth et al. Laser light in the BMW i8 controlling and E/E integration. ATZelektronik Worldwide, 9, 14(2014).
[112] C. Wang, Y. Liu, W. Li et al. A 375 Mb/s real-time internet of vehicles system based on automotive headlight utilizing OFDM-64QAM modulation format. 18th International Conference on Optical Communications and Networks (ICOCN), 1(2019).
[113] S. Han, C. Wang, G. Li et al. A 427.5 Mbps automotive headlight visible light communication system utilizing 64QAM-DMT modulation with software pre-equalization. IEEE/CIC International Conference on Communications in China (ICCC), 169(2019).
[114] W. Li, J. Liu, P. Zou et al. Geometrically shaped 16-APSK modulations in Internet of vehicles system based on automotive headlight. Optical Fibers, Fiber-based Devices and Applications, OFTu2A. 4(2019).
[115] C. Wang, G. Li, F. Hu et al. Visible light communication for vehicle to everything beyond 1 Gb/s based on an LED car headlight and a 2 × 2 PIN array. Chin. Opt. Lett., 18, 110602(2020).
[116] G. Li, W. Niu, Y. Ha et al. Position-dependent MIMO demultiplexing strategy for high-speed visible light communication in Internet of Vehicles. IEEE Internet Things J., 9, 10833(2021).
[117] V. J. Nadeau, D. S. Elson, G. B. Hanna et al. Modelling of a laser-pumped light source for endoscopic surgery. Proc. SPIE, 7103, 71030J(2008).
[118] O. Huang, J. Shi, N. Chi. Performance and complexity study of a neural network post-equalizer in a 638-nm laser transmission system through over 100-m plastic optical fiber. Opt. Eng., 61, 126108(2022).
[119] J.-E. Kim, Y.-H. Kim, J.-H. Oh et al. Interactive smart fashion using user-oriented visible light communication: the case of modular strapped cuffs and zipper slider types. Wirel. Commun. Mobile Comput., 2017, 5203053(2017).
[120] V. P. Rachim, J. An, P. N. Quan et al. A novel smartphone camera-LED communication for clinical signal transmission in mHealth-rehabilitation system. 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3437(2017).
[121] X. Wang, C. Deng, Y. Huang et al. Spherical concave micro-mirror fabricated using gray-tone optical lithography for vertical coupling. Opt. Express, 29, 13288(2021).