• Chinese Optics Letters
  • Vol. 22, Issue 9, 092502 (2024)
Yuqi Hou1,2, Yue Wang3, Zengxin Li1,2, Meixin Liu1..., Shulan Yi1,2, Xiaoqian Wang4, Liang Xia4, Guangyi Liu4, Jianyang Shi1,2, Ziwei Li1,2, Junwen Zhang1,2, Nan Chi1, Tien Khee Ng3, Boon S. Ooi3 and Chao Shen1,2,*|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory for Information Science of Electromagnetic Waves, Ministry of Education, School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • 2ZGC Institute of Ubiquitous-X Innovation and Applications, Beijing 100876, China
  • 3Photonics Laboratory, Electrical and Computer Engineering, Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
  • 4China Mobile Research Institute, Beijing 100876, China
  • show less
    DOI: 10.3788/COL202422.092502 Cite this Article Set citation alerts
    Yuqi Hou, Yue Wang, Zengxin Li, Meixin Liu, Shulan Yi, Xiaoqian Wang, Liang Xia, Guangyi Liu, Jianyang Shi, Ziwei Li, Junwen Zhang, Nan Chi, Tien Khee Ng, Boon S. Ooi, Chao Shen, "Tutorial on laser-based visible light communications [Invited]," Chin. Opt. Lett. 22, 092502 (2024) Copy Citation Text show less
    References

    [1] C. Basu, M. Meinhardt-Wollweber, B. Roth. Lighting with laser diodes. Adv. Opt. Technol., 2, 313(2013).

    [2] S. Li, Y. Guo, R.-J. Xie. Laser phosphors for next-generation lighting applications. Acc. Mater. Res., 3, 1299(2022).

    [3] C. Cozzan, G. Lheureux, N. O’Dea et al. Stable, heat-conducting phosphor composites for high-power laser lighting. ACS Appl. Mater. Interfaces, 10, 5673(2018).

    [4] J. Vetrovec, D. A. Copeland, R. Feeler et al. Testing of an active heat sink for advanced high-power laser diodes. Proc. SPIE, 7918, 79180G(2011).

    [5] A. Korpel, R. Adler, P. Desmares et al. A television display using acoustic deflection and modulation of coherent light. Appl. Opt., 5, 1667(1966).

    [6] Y. Hou, Z. Zhou, C. Zhang et al. Full-color flexible laser displays based on random laser arrays. Sci. China Mater., 64, 2805(2021).

    [7] K. V. Chellappan, E. Erden, H. Urey. Laser-based displays: a review. Appl. Opt., 49, F79(2010).

    [8] X. Zhan, F.-F. Xu, Z. Zhou et al. 3D laser displays based on circularly polarized lasing from cholesteric liquid crystal arrays. Adv. Mater., 33, 2104418(2021).

    [9] M. A. Khalighi, M. Uysal. Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor., 16, 2231(2014).

    [10] C.-T. Tsai, C.-H. Cheng, H.-C. Kuo et al. Toward high-speed visible laser lighting based optical wireless communications. Prog. Quantum Electron., 67, 100225(2019).

    [11] E. Ciaramella, G. Cossu, E. Ertunc et al. Prospects of visible light communications in satellites. 22nd International Conference on Transparent Optical Networks (ICTON), 1(2020).

    [12] H. Haas. Wireless Data from Every Light Bulb(2011).

    [13] K. T. Swami, A. A. Moghe. A review of LiFi technology. 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), 1(2020).

    [14] X. Bao, G. Yu, J. Dai et al. Li-Fi: light fidelity-a survey. Wireless Netw., 21, 1879(2015).

    [15] H. Haas, L. Yin, Y. Wang et al. What is LiFi?. J. Lightwave Technol., 34, 1533(2016).

    [16] X. Wu, M. D. Soltani, L. Zhou et al. Hybrid LiFi and WiFi networks: a survey. IEEE Commun. Surv. Tutor., 23, 1398(2021).

    [17] R. N. Hall, G. E. Fenner, J. D. Kingsley et al. Coherent light emission from GaAs junctions. Phys. Rev. Lett., 9, 366(1962).

    [18] R. Hashimoto, H. Hung, J. Hwang et al. High-power 2.8 W blue-violet laser diode for white light sources. Opt. Rev., 19, 412(2012).

    [19] Y. Hirano, Y. Tani, M. Ishida et al. 49-1: Invited paper: red, green and blue laser diodes for display applications. SID Symposium Digest of Technical Papers, 673(2021).

    [20] S. Kimura, H. Yoshida, K. Uesugi et al. Performance enhancement of blue light-emitting diodes with InGaN/GaN multi-quantum wells grown on Si substrates by inserting thin AlGaN interlayers. J. Appl. Phys., 120, 113104(2016).

    [21] J. Piprek. Energy efficiency analysis of GaN-based blue light emitters. ECS J. Solid State Sci. Technol., 9, 015008(2020).

    [22] S. Masui, Y. Nakatsu, D. Kasahara et al. Recent improvement in nitride lasers. Gallium Nitride Materials and Devices XII, 161(2017).

    [23] Y. Nakatsu, Y. Nagao, K. Kozuru et al. High-efficiency blue and green laser diodes for laser displays. Gallium Nitride Materials and Devices XIV, 99(2019).

    [24] Y. Nakatsu, Y. Nagao, T. Hirao et al. Blue and green InGaN semiconductor lasers as light sources for displays. Gallium Nitride Materials and Devices XV, 81(2020).

    [25] Y. Nakatsu, Y. Nagao, T. Hirao et al. Edge-emitting blue laser diode with high CW wall-plug efficiency of 50%. Gallium Nitride Materials and Devices XVII, 58(2022).

    [26] Y. Nakatsu, T. Hirao, T. Morizumi et al. Blue and green edge-emitting laser diodes and vertical-cavity surface emitting lasers on C-plane GaN substrates. Gallium Nitride Materials and Devices XVIII, 102(2023).

    [27] M. Murayama, Y. Nakayama, K. Yamazaki et al. Watt-class green (530 nm) and blue (465 nm) laser diodes. Phys. Status Solidi A, 215, 1700513(2018).

    [28] J. Wang, J. Hu, C. Guan et al. High-speed GaN-based laser diode with modulation bandwidth exceeding 5 GHz for 20 Gbps visible light communication. Photon. Res., 12, 1186(2024).

    [29] L. Hu, X. Ren, J. Liu et al. High-power hybrid GaN-based green laser diodes with ITO cladding layer. Photon. Res., 8, 279(2020).

    [30] T. Kozaki, H. Matsumura, Y. Sugimoto et al. High-power and wide wavelength range GaN-based laser diodes. Proc. SPIE, 6133, 613306(2006).

    [31] L. Jiang, J. Liu, A. Tian et al. GaN-based green laser diodes. J. Semicond., 37, 111001(2016).

    [32] H. Ohta, S. P. DenBaars, S. Nakamura. Future of group-III nitride semiconductor green laser diodes. J. Opt. Soc. Am. B, 27, B45(2010).

    [33] T. Nakamura. Recent progress of green laser diodes. Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR), 1(2013).

    [34] S. Lutgen, A. Avramescu, T. Lermer et al. True green InGaN laser diodes. Phys. Status Solidi A, 207, 1318(2010).

    [35] S. Lutgen, D. Dini, I. Pietzonka et al. Recent results of blue and green InGaN laser diodes for laser projection. Proc. SPIE, 7953, 79530G(2011).

    [36] Z. Lu, J. Cai, Z. Xu et al. 11.2 Gbps 100-meter free-space visible light laser communication utilizing bidirectional reservoir computing equalizer. Opt. Express, 31, 44315(2023).

    [37] S. Kawanaak, S. Kitamura, S. Miyamoto et al. 71-2: Invited paper: high power red laser diodes for display applications. SID Symposium Digest of Technical Papers, 953(2022).

    [38] J. Hu, F. Hu, J. Jia et al. 46.4 Gbps visible light communication system utilizing a compact tricolor laser transmitter. Opt. Express, 30, 4365(2022).

    [39] M. Hagimoto, S. Miyamoto, K. Watanabe et al. Red laser diodes explore the future of biomedical and quantum technology. Proc. SPIE, 12440, 124400M(2023).

    [40] S. Uchida, M. Takeya, S. Ikeda et al. Recent progress in high-power blue-violet lasers. IEEE J. Sel. Top. Quantum Electron., 9, 1252(2003).

    [41] Y. Xu, H. Hu, W. Zhuang et al. White light emission from ultraviolet laser diode. Laser Phys., 19, 403(2009).

    [42] Y. Narukawa, I. Niki, K. Izuno et al. Phosphor-conversion white light emitting diode using InGaN near-ultraviolet chip. Jpn. J. Appl. Phys., 41, L371(2002).

    [43] J. W. Raring, P. Rudy, E. Goutain et al. High-power GaN-based laser diodes for next generation applications. Proceeding of the International Conference on Compound Semiconductor Manufacturing Technology (CS MANTECH 2022), 9(2022).

    [44] S. Muthu, F. J. Schuurmans, M. D. Pashley. Red, green, and blue LEDs for white light illumination. IEEE J. Sel. Top. Quantum Electron., 8, 333(2002).

    [45] K. A. Denault, M. Cantore, S. Nakamura et al. Efficient and stable laser-driven white lighting. AIP Adv., 3, 072107(2013).

    [46] A. Neumann, J. J. Wierer, W. Davis et al. Four-color laser white illuminant demonstrating high color-rendering quality. Opt. Express, 19, A982(2011).

    [47] B. Janjua, T. K. Ng, C. Zhao et al. Health-friendly high-quality white light using violet-green-red laser and InGaN nanowires-based true yellow nanowires light-emitting diodes. Gallium Nitride Materials and Devices XII, 88(2017).

    [48] F. Fan, S. Turkdogan, Z. Liu et al. A monolithic white laser. Nat. Nanotechnol., 10, 796(2015).

    [49] Y. Wang, H. Wang, O. Alkhazragi et al. Two-dimensional hybrid organic-inorganic perovskite nanosheets for Gb/s visible-light communication. IEEE Photon. Technol. Lett., 34, 753(2022).

    [50] J. X. Wang, Y. Wang, I. Nadinov et al. Metal-organic frameworks in mixed-matrix membranes for high-speed visible-light communication. J. Am. Chem. Soc., 144, 6813(2022).

    [51] J.-X. Wang, Y. Wang, I. Nadinov et al. Aggregation-induced fluorescence enhancement for efficient X-ray imaging scintillators and high-speed optical wireless communication. ACS Mater. Lett., 4, 1668(2022).

    [52] M. Cantore, N. Pfaff, R. M. Farrell et al. High luminous flux from single crystal phosphor-converted laser-based white lighting system. Opt. Express, 24, A215(2016).

    [53] X. Li, Z. Tong, W. Lyu et al. Underwater quasi-omnidirectional wireless optical communication based on perovskite quantum dots. Opt Express, 30, 1709(2022).

    [54] T. K. Ng, J. A. Holguin-Lerma, C. H. Kang et al. Group-III-nitride and halide-perovskite semiconductor gain media for amplified spontaneous emission and lasing applications. J. Phys. D, 54, 143001(2021).

    [55] I. Papakonstantinou, M. Portnoi, M. G. Debije. The hidden potential of luminescent solar concentrators. Adv. Energy Mater., 11, 2002883(2020).

    [56] G. L. Yang, X. L. Jiang, H. Xu et al. Applications of MOFs as luminescent sensors for environmental pollutants. Small, 17, e2005327(2021).

    [57] I. Dursun, C. Shen, M. R. Parida et al. Perovskite nanocrystals as a color converter for visible light communication. ACS Photonics, 3, 1150(2016).

    [58] C. H. Kang, I. Dursun, G. Liu et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light Sci. Appl., 8, 94(2019).

    [59] C. H. Kang, Y. Wang, O. Alkhazragi et al. Down-converting luminescent optoelectronics and their applications. APL Photonics, 8, 020903(2023).

    [60] Y. Wang, H. Wang, O. Alkhazragi et al. Fast-acting halide-perovskite-based RGB fluorescent materials for aggregate Gb/s visible light communication. Proc. SPIE, 12417, 124170D(2023).

    [61] J. X. Wang, Y. Wang, M. Almalki et al. Engineering metal-organic frameworks with tunable colors for high-performance wireless communication. J. Am. Chem. Soc., 145, 15435(2023).

    [62] M. Sait, A. Trichili, O. Alkhazragi et al. Dual-wavelength luminescent fibers receiver for wide field-of-view, Gb/s underwater optical wireless communication. Opt. Express, 29, 38014(2021).

    [63] Y. Guo, M. Kong, M. Sait et al. Compact scintillating-fiber/450-nm-laser transceiver for full-duplex underwater wireless optical communication system under turbulence. Opt. Express, 30, 53(2022).

    [64] C. H. Kang, A. Trichili, O. Alkhazragi et al. Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication. Opt. Express, 27, 30450(2019).

    [65] C. H. Kang, O. Alkhazragi, L. Sinatra et al. All-inorganic halide-perovskite polymer-fiber-photodetector for high-speed optical wireless communication. Opt. Express, 30, 9823(2022).

    [66] Y. Wang, J. X. Wang, O. Alkhazragi et al. Multifunctional difluoroboron beta-diketonate-based luminescent receiver for a high-speed underwater wireless optical communication system. Opt. Express, 31, 32516(2023).

    [67] J. Kinoshita, Y. Ikeda, Y. Takeda et al. Suppressed speckle contrast of blue light emission out of white lamp with phosphors excited by blue laser diodes for high-brightness lighting applications. Opt. Rev., 19, 427(2012).

    [68] N. Chi, Y. Zhou, Y. Wei et al. Visible light communication in 6G: advances, challenges, and prospects. IEEE Veh. Technol. Mag., 15, 93(2020).

    [69] B. Janjua, H. M. Oubei, J. R. D. Retamal et al. Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication. Opt. Express, 23, 18746(2015).

    [70] D. Tsonev, S. Videv, H. Haas. Towards a 100 Gb/s visible light wireless access network. Opt. Express, 23, 1627(2015).

    [71] T.-C. Wu, Y.-C. Chi, H.-Y. Wang et al. Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s. Sci. Rep., 7, 11(2017).

    [72] Y.-F. Huang, Y.-C. Chi, M.-K. Chen et al. Red/green/blue LD mixed white-light communication at 6500 K with divergent diffuser optimization. Opt. Express, 26, 23397(2018).

    [73] L.-Y. Wei, C.-W. Hsu, Y. Hsu et al. 20 Gbit/s tricolor R/G/B laser diode based bi-directional signal remodulation visible light communication system. Optical Fiber Communication Conference, M3K. 2(2018).

    [74] H. Chun, A. Gomez, C. Quintana et al. A wide-area coverage 35 Gb/s visible light communications link for indoor wireless applications. Sci. Rep., 9, 4952(2019).

    [75] W.-C. Wang, C.-H. Cheng, H.-Y. Wang et al. White-light color conversion with red/green/violet laser diodes and yellow light-emitting diode mixing for 34.8 Gbit/s visible lighting communication. Photon. Res., 8, 1398(2020).

    [76] L. Issaoui, S. Cho, H. Chun. High CRI RGB laser lighting with 11-Gb/s WDM link using off-the-shelf phosphor plate. IEEE Photon. Technol. Lett., 34, 97(2022).

    [77] Z. Luo, X. Lin, Z. Lu et al. Over 100 Gbps Free-space laser-based visible light communication system based on 10-λ WDM module. European Conference on Optical Communications, Tu.A.4.4(2023).

    [78] Z. Luo, X. Lin, Z. Lu et al. 113 Gbps rainbow visible light laser communication system based on 10λ laser WDM emitting module in fiber-free space-fiber link. Opt. Express, 32, 2561(2024).

    [79] Z. Xu, X. Lin, Z. Luo et al. Flexible 2 × 2 multiple access visible light communication system based on an integrated parallel GaN/InGaN micro-photodetector array module. Photon. Res., 12, 793(2024).

    [80] S. Nakamura, M. Senoh, S. I. Nagahama et al. Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes. Appl. Phys. Lett., 69, 4056(1996).

    [81] B. Wozniak, J. Dera. Light Absorption in Sea Water(2007).

    [82] X. Sun, W. Cai, O. Alkhazragi et al. 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication. Opt. Express, 26, 12870(2018).

    [83] X. Sun, M. Kong, O. A. Alkhazragi et al. Field demonstrations of wide-beam optical communications through water–air interface. IEEE Access, 8, 160480(2020).

    [84] Y. Weng, Y. Sekimori, S. Chun et al. A scalable laser-based underwater wireless optical communication solution between autonomous underwater vehicle fleets. Appl. Opt., 62, 8261(2023).

    [85] M. Kong, J. Lin, Y. Guo et al. AquaE-lite hybrid-solar-cell receiver-modality for energy-autonomous terrestrial and underwater internet-of-things. IEEE Photonics J., 12, 7904713(2020).

    [86] O. Alkhazragi, X. Sun, V. Zuba et al. Spectrally resolved characterization of thermally induced underwater turbulence using a broadband white-light interrogator. IEEE Photonics J., 11, 7905609(2019).

    [87] Y. Weng, Y. Guo, O. Alkhazragi et al. Impact of turbulent-flow-induced scintillation on deep-ocean wireless optical communication. J. Lightwave Technol., 37, 5083(2019).

    [88] H. M. Oubei, E. Zedini, R. T. ElAfandy et al. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems. Opt. Lett., 42, 2455(2017).

    [89] E. Zedini, H. M. Oubei, A. Kammoun et al. Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems. IEEE Trans. Commun., 67, 2893(2019).

    [90] J. Hu, Z. Guo, J. Shi et al. A metasurface-based full-color circular auto-focusing Airy beam transmitter for stable high-speed underwater wireless optical communications. Nat. Commun., 15, 2944(2024).

    [91] X. Liu, S. Yi, X. Zhou et al. Laser-based white-light source for high-speed underwater wireless optical communication and high-efficiency underwater solid-state lighting. Opt. Express, 26, 19259(2018).

    [92] C.-Y. Li, H.-H. Lu, W.-S. Tsai et al. A 5 m/25 Gbps underwater wireless optical communication system. IEEE Photonics J., 10, 7904909(2018).

    [93] J. Wang, C. Lu, S. Li et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode. Opt. Express, 27, 12171(2019).

    [94] W. S. Tsai, H. H. Lu, H. W. Wu et al. A 30 Gb/s PAM4 underwater wireless laser transmission system with optical beam reducer/expander. Sci. Rep., 9, 8605(2019).

    [95] J. H. Araújo, R. Kraemer, J. S. Tavares et al. 5.36 Gbit/s OFDM optical wireless communication link over the underwater channel. 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)(2020).

    [96] X. Chen, W. Lyu, Z. Zhang et al. 56-m/3.31-Gbps underwater wireless optical communication employing Nyquist single carrier frequency domain equalization with noise prediction. Opt. Express, 28, 23784(2020).

    [97] X. Yang, Z. Tong, Y. Dai et al. 100 m full-duplex underwater wireless optical communication based on blue and green lasers and high sensitivity detectors. Opt. Commun., 498, 127261(2021).

    [98] C. Tu, W. Liu, W. Jiang et al. First demonstration of 1 Gb/s PAM4 signal transmission over a 130 m underwater optical wireless communication channel with digital equalization. IEEE/CIC International Conference on Communications in China (ICCC)(2021).

    [99] J. Du, Y. Wang, C. Fei et al. Experimental demonstration of 50-m/5-Gbps underwater optical wireless communication with low-complexity chaotic encryption. Opt. Express, 29, 783(2021).

    [100] X. Hong, J. Du, Y. Wang et al. Experimental demonstration of 55-m/2-Gbps underwater wireless optical communication using SiPM diversity reception and nonlinear decision-feedback equalizer. IEEE Access, 10, 47814(2022).

    [101] Z. Du, W. Ge, C. Cai et al. 90-m/660-Mbps underwater wireless optical communication enabled by interleaved single-carrier FDM scheme combined with sparse weight-initiated DNN equalizer. J. Lightwave Technol., 41, 5310(2023).

    [102] B. Yu, S. Liang, X. Ding et al. A sandwich structure light-trapping fluorescence antenna with large field of view for visible light communication. IEEE Trans. Electron Devices, 68, 565(2020).

    [103] O. Alkhazragi, A. Trichili, I. Ashry et al. Wide-field-of-view optical detectors using fused fiber-optic tapers. Opt. Lett., 46, 1916(2021).

    [104] Y. Hou, C. Ma, D. Li et al. 3 Gbit/s wide field-of-view visible light communication system based on white laser diode. Asia Communications and Photonics Conference, M5B. 2(2021).

    [105] C. Ma, Y. Hou, L. Zha et al. A large field-of-view (FOV) visible laser light communication system reaching 180° with silicon photomultiplier receiver. 19th China International Forum on Solid State Lighting & 2022 8th International Forum on Wide Bandgap Semiconductors (SSLCHINA: IFWS), 285(2023).

    [106] J. Zhao, Y. Liu, T. Xu. Advanced DSP for coherent optical fiber communication. Appl. Sci., 9, 4192(2019).

    [107] S. Huang, C. Chen, R. Bian et al. 5 Gbps optical wireless communication using commercial SPAD array receivers. Opt. Lett., 47, 2294(2022).

    [108] B. Cao, K. Yuan, H. Li et al. The performance improvement of VLC-OFDM system based on reservoir computing. Photonics, 9, 185(2022).

    [109] C.-X. Wang, X. You, X. Gao et al. On the road to 6G: visions, requirements, key technologies and testbeds. IEEE Commun. Surv. Tutor., 25, 905(2023).

    [110] W. Jiang, B. Han, M. A. Habibi et al. The road towards 6G: a comprehensive survey. IEEE Open J. Commun. Soc., 2, 334(2021).

    [111] M. Werkstetter, S. Weber, F. Hirth et al. Laser light in the BMW i8 controlling and E/E integration. ATZelektronik Worldwide, 9, 14(2014).

    [112] C. Wang, Y. Liu, W. Li et al. A 375 Mb/s real-time internet of vehicles system based on automotive headlight utilizing OFDM-64QAM modulation format. 18th International Conference on Optical Communications and Networks (ICOCN), 1(2019).

    [113] S. Han, C. Wang, G. Li et al. A 427.5 Mbps automotive headlight visible light communication system utilizing 64QAM-DMT modulation with software pre-equalization. IEEE/CIC International Conference on Communications in China (ICCC), 169(2019).

    [114] W. Li, J. Liu, P. Zou et al. Geometrically shaped 16-APSK modulations in Internet of vehicles system based on automotive headlight. Optical Fibers, Fiber-based Devices and Applications, OFTu2A. 4(2019).

    [115] C. Wang, G. Li, F. Hu et al. Visible light communication for vehicle to everything beyond 1 Gb/s based on an LED car headlight and a 2 × 2 PIN array. Chin. Opt. Lett., 18, 110602(2020).

    [116] G. Li, W. Niu, Y. Ha et al. Position-dependent MIMO demultiplexing strategy for high-speed visible light communication in Internet of Vehicles. IEEE Internet Things J., 9, 10833(2021).

    [117] V. J. Nadeau, D. S. Elson, G. B. Hanna et al. Modelling of a laser-pumped light source for endoscopic surgery. Proc. SPIE, 7103, 71030J(2008).

    [118] O. Huang, J. Shi, N. Chi. Performance and complexity study of a neural network post-equalizer in a 638-nm laser transmission system through over 100-m plastic optical fiber. Opt. Eng., 61, 126108(2022).

    [119] J.-E. Kim, Y.-H. Kim, J.-H. Oh et al. Interactive smart fashion using user-oriented visible light communication: the case of modular strapped cuffs and zipper slider types. Wirel. Commun. Mobile Comput., 2017, 5203053(2017).

    [120] V. P. Rachim, J. An, P. N. Quan et al. A novel smartphone camera-LED communication for clinical signal transmission in mHealth-rehabilitation system. 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3437(2017).

    [121] X. Wang, C. Deng, Y. Huang et al. Spherical concave micro-mirror fabricated using gray-tone optical lithography for vertical coupling. Opt. Express, 29, 13288(2021).

    Yuqi Hou, Yue Wang, Zengxin Li, Meixin Liu, Shulan Yi, Xiaoqian Wang, Liang Xia, Guangyi Liu, Jianyang Shi, Ziwei Li, Junwen Zhang, Nan Chi, Tien Khee Ng, Boon S. Ooi, Chao Shen, "Tutorial on laser-based visible light communications [Invited]," Chin. Opt. Lett. 22, 092502 (2024)
    Download Citation