• Chinese Optics Letters
  • Vol. 22, Issue 9, 092502 (2024)
Yuqi Hou1,2, Yue Wang3, Zengxin Li1,2, Meixin Liu1..., Shulan Yi1,2, Xiaoqian Wang4, Liang Xia4, Guangyi Liu4, Jianyang Shi1,2, Ziwei Li1,2, Junwen Zhang1,2, Nan Chi1, Tien Khee Ng3, Boon S. Ooi3 and Chao Shen1,2,*|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory for Information Science of Electromagnetic Waves, Ministry of Education, School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • 2ZGC Institute of Ubiquitous-X Innovation and Applications, Beijing 100876, China
  • 3Photonics Laboratory, Electrical and Computer Engineering, Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
  • 4China Mobile Research Institute, Beijing 100876, China
  • show less
    DOI: 10.3788/COL202422.092502 Cite this Article Set citation alerts
    Yuqi Hou, Yue Wang, Zengxin Li, Meixin Liu, Shulan Yi, Xiaoqian Wang, Liang Xia, Guangyi Liu, Jianyang Shi, Ziwei Li, Junwen Zhang, Nan Chi, Tien Khee Ng, Boon S. Ooi, Chao Shen, "Tutorial on laser-based visible light communications [Invited]," Chin. Opt. Lett. 22, 092502 (2024) Copy Citation Text show less
    Applications of VLC in future networks.
    Fig. 1. Applications of VLC in future networks.
    Promotion of blue and green LDs’ WPE in recent years. The data are from Refs. [22-27" target="_self" style="display: inline;">-27].
    Fig. 2. Promotion of blue and green LDs’ WPE in recent years. The data are from Refs. [22-27" target="_self" style="display: inline;">-27].
    WPE varies with wavelength. The data are from Refs. [22,26,27].
    Fig. 3. WPE varies with wavelength. The data are from Refs. [22,26,27].
    Demonstration of different ways of forming a laser-based white light source.
    Fig. 4. Demonstration of different ways of forming a laser-based white light source.
    Phosphor materials used to generate white light. (a) Perovskite-based green phosphor with red phosphor[57]. Copyright 2016 American Chemical Society. (b) Single crystal YAG:Ce phosphor[52]. ©2016 Optica Publishing Group. (c) Metal–organic framework-based phosphor for WDM, reprinted with permission from Ref. [61]. Copyright 2023 American Chemical Society.
    Fig. 5. Phosphor materials used to generate white light. (a) Perovskite-based green phosphor with red phosphor[57]. Copyright 2016 American Chemical Society. (b) Single crystal YAG:Ce phosphor[52]. ©2016 Optica Publishing Group. (c) Metal–organic framework-based phosphor for WDM, reprinted with permission from Ref. [61]. Copyright 2023 American Chemical Society.
    A typical VLC lab testing system setup.
    Fig. 6. A typical VLC lab testing system setup.
    (a) A high-power laser-based white light emitter; (b) the luminance distribution of the laser-based white light emitter at 1 m; (c) measured data transmission rate versus tilting angle at a transmission distance of 2 m.
    Fig. 7. (a) A high-power laser-based white light emitter; (b) the luminance distribution of the laser-based white light emitter at 1 m; (c) measured data transmission rate versus tilting angle at a transmission distance of 2 m.
    Challenges and possible solutions for the laser-based VLC system.
    Fig. 8. Challenges and possible solutions for the laser-based VLC system.
    TypeCCT/KCRIData Rate/GbpsDistance/mYearRef.
    RGB58354.40.22015[69]
    RGB800014.00.32015[70]
    RGB838254.48.80.52017[71]
    RGB650011.20.52018[72]
    RGB20.21.02018[73]
    RGBV35.04.02019[74]
    RGV-Y485271.628.42020[75]
    RGB-Y35039011.70.52022[76]
    Table 1. Comparison of Illumination and Communication Performance of Laser-Based VLC Systems
    WavelengthData Rate (Modulation Scheme)Transmission Distance/mYearRef.
    RGBAggregate 9.4 Gbps (OOK)2.32018[91]
    680 nm25 Gbps (NRZ-OOK)52018[92]
    520 nm500 Mbps (NRZ-OOK)1002019[93]
    480 nm30 Gbps (PAM4)152019[94]
    450 nm5.36 Gbps (OFDM)2.42020[95]
    520 nm3.31 Gbps (OFDM)562020[96]
    Blue & green200 Mbps (OFDM)1202021[97]
    520 nm1 Gbps (PAM4)1302021[98]
    450 nm5 Gbps (DFT-S DMT)502021[99]
    450 nm2 Gbps (NDFE)552022[100]
    450 nm660 Mb/s (I-SC-FDM)902023[101]
    Table 2. Comparison of LD-Based UWOC Performance in the Past Six Years
    Yuqi Hou, Yue Wang, Zengxin Li, Meixin Liu, Shulan Yi, Xiaoqian Wang, Liang Xia, Guangyi Liu, Jianyang Shi, Ziwei Li, Junwen Zhang, Nan Chi, Tien Khee Ng, Boon S. Ooi, Chao Shen, "Tutorial on laser-based visible light communications [Invited]," Chin. Opt. Lett. 22, 092502 (2024)
    Download Citation