• Photonics Research
  • Vol. 7, Issue 3, A1 (2019)
Yan Liang1、3, Qilai Fei1, Zhihe Liu1, Kun Huang1, and Heping Zeng1、2、*
Author Affiliations
  • 1Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • 3e-mail: yanliangSPD@163.com
  • show less
    DOI: 10.1364/PRJ.7.0000A1 Cite this Article Set citation alerts
    Yan Liang, Qilai Fei, Zhihe Liu, Kun Huang, Heping Zeng. Low-noise InGaAs/InP single-photon detector with widely tunable repetition rates[J]. Photonics Research, 2019, 7(3): A1 Copy Citation Text show less
    References

    [1] B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, H. Zbinden. Provably secure and practical quantum key distribution over 307  km of optical fibre. Nat. Photonics, 9, 163-168(2015).

    [2] G. Wang, Z. Y. Li, Y. C. Qiao, Z. Y. Chen, X. Peng, H. Guo. Light source monitoring in quantum key distribution with single-photon detector at room temperature. IEEE J. Quantum Electron., 54, 9300110(2018).

    [3] O. Kahl, S. Ferrari, V. Kovalyuk, A. Vetter, G. Lewes-Malandrakis, C. Nebel, A. Korneev, G. Goltsman, W. Pernice. Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits. Optica, 4, 557-562(2017).

    [4] B. C. Du, C. K. Pang, D. Wu, Z. H. Li, H. Peng, Y. L. Tao, E. Wu, G. Wu. High-speed photon-counting laser ranging for broad range of distances. Sci. Rep., 8, 4198(2018).

    [5] J. Blacksberg, Y. Maruyama, E. Charbon, G. R. Rossman. Fast single-photon avalanche diode arrays for laser Raman spectroscopy. Opt. Lett., 36, 3672-3674(2011).

    [6] R. H. Hadfield. Single-photon detectors for optical quantum information applications. Nat. Photonics, 3, 696-705(2009).

    [7] M. Legre, R. Thew, H. Zbinden, N. Gisin. High resolution optical time domain reflectometer based on 1.55  μm up-conversion photon-counting module. Opt. Express, 15, 8237-8242(2007).

    [8] W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, X. M. Xie. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature. Sci. China: Phys., Mech. Astron., 60, 120314(2017).

    [9] J. H. Ma, X. L. Chen, H. Q. Hu, H. F. Pan, E. Wu, H. P. Zeng. Quantum detector tomography of a single-photon frequency upconversion detection system. Opt. Express, 24, 272685(2016).

    [10] W. H. Jiang, J. H. Liu, Y. Liu, G. Jin, J. Zhang, J. W. Pan. 1.25  GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit. Opt. Lett., 42, 5090-5093(2017).

    [11] M. Stipcevic, B. G. Christensen, P. G. Kwiat, D. J. Gauthier. Advanced active quenching circuit for ultrafast quantum cryptography. Opt. Express, 25, 21861-21876(2017).

    [12] N. Namekata, S. Adachi, S. Inoue. 1.5  GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode. Opt. Express, 17, 6275-6282(2009).

    [13] Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, A. J. Shields. Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes. Appl. Phys. Lett., 96, 071102(2010).

    [14] A. Tosi, F. Acerbi, M. Anti, F. Zappa. InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30  ps tail. IEEE J. Quantum Electron., 48, 1227-1232(2012).

    [15] J. Zhang, R. Thew, C. Barreiro, H. Zbinden. Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes. Appl. Phys. Lett., 95, 091103(2009).

    [16] Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, H. Zeng. Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode. IEEE Photon. Technol. Lett., 23, 887-889(2011).

    [17] J. C. Campbell, W. Sun, Z. Lu, M. A. Itzler, X. Jiang. Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes. IEEE J. Quantum Electron., 48, 1505-1511(2012).

    [18] A. Restelli, J. C. Bienfang, A. L. Migdall. Single-photon detection efficiency up to 50% at 1310  nm with an InGaAs/InP avalanche diode gated at 1.25  GHz. Appl. Phys. Lett., 102, 141104(2013).

    [19] D. Y. He, S. Wang, W. Chen, Z. Q. Yin, Y. J. Qian, Z. Zhou, G. C. Guo, Z. F. Han. Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse. Appl. Phys. Lett., 110, 111104(2017).

    [20] Y. H. Zhou, Z. W. Yu, X. B. Wang. Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A, 93, 042324(2016).

    [21] H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, J. W. Pan. Measurement-device-independent quantum key distribution over a 404  km optical fiber. Phys. Rev. Lett., 117, 190501(2016).

    [22] X. L. Chen, E. Wu, L. L. Xu, Y. Liang, G. Wu, H. Zeng. Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates. Appl. Phys. Lett., 95, 131118(2009).

    CLP Journals

    [1] Xian-Min Jin, M. S. Kim, Brian J. Smith. Quantum photonics: feature introduction[J]. Photonics Research, 2019, 7(12): QP1

    Yan Liang, Qilai Fei, Zhihe Liu, Kun Huang, Heping Zeng. Low-noise InGaAs/InP single-photon detector with widely tunable repetition rates[J]. Photonics Research, 2019, 7(3): A1
    Download Citation