• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 1, 56 (2020)
Tong FANG1、3, Li-Yuan LIU1、3、*, Zhao-Yang LIU1、3, Peng FENG1、3, Yuan-Yuan LI2、3, Jun-Qi LIU2、3, Jian LIU1、3, and Nan-Jian WU1、3
Author Affiliations
  • 1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing00083, China
  • 2Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing100083, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.01.009 Cite this Article
    Tong FANG, Li-Yuan LIU, Zhao-Yang LIU, Peng FENG, Yuan-Yuan LI, Jun-Qi LIU, Jian LIU, Nan-Jian WU. A 3.0 THz detector in 65 nm standard CMOS process[J]. Journal of Infrared and Millimeter Waves, 2020, 39(1): 56 Copy Citation Text show less
    References

    [1] D L Woolard, J O Jensen, R J Hwu. Terahertz science and technology for military and security applications. world scientific(2007).

    [2] Q Cassar, A Al-Ibadi, L Mavarani. Pilot study of freshly excised breast tissue response in the 300–600 GHz range. Biomedical optics express, 9, 2930-2942(2018).

    [3] H Hoshina, Y Sasaki, A Hayashi. Noninvasive mail inspection system with terahertz radiation. Applied spectroscopy, 63, 81-86(2009).

    [4] I Hosako, N Oda. : 003651. SPIE Newsroom, 1201105(2011).

    [5] Y S Lee. Principles of terahertz science and technology. Springer Science & Business Media(2009).

    [6] A J Kreisler, A Gaugue. Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range, 13, 1235(2000).

    [7] P with HDPE window, Tydex Inc. [Online](2019).

    [8] Z Liu, L Liu, J Yang. A CMOS fully integrated 860-GHz terahertz sensor, 7, 455-465(2017).

    [9] M I Dyakonov, M S Shur. Plasma wave electronics: novel terahertz devices using two dimensional electron fluid. IEEE Transactions on Electron Devices, 43, 1640-1645(1996).

    [10] W Knap, V Kachorovskii, Y Deng. Nonresonant detection of terahertz radiation in field effect transistors. Journal of Applied Physics, 91, 9346-9353(2002).

    [11] W Knap, F Teppe, Y Meziani. Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Applied Physics Letters, 85, 675-677(2004).

    [12] E Ojefors, U R Pfeiffer, A Lisauskas. A 0.65 THz focal-plane array in a quarter-micron CMOS process technology. IEEE Journal of Solid-State Circuits, 44, 1968-1976(2009).

    [13] R Al Hadi, H Sherry, J Grzyb. A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 47, 2999-3012(2012).

    [14] T Fang, R Dou, L Liu. A 25 fps 32× 24 Digital CMOS Terahertz Image Sensor, 87-90(2018).

    [15] 15International Telecommunication Union ITU-R P.676-11: Attenuation by Atmospheric Gases (ITU, 2016.

    [16] accessed on Mar. 2019. Available:.

    [17] T Fang, Z Liu, L Liu. 65 nm standard CMOS process, 189-192(2017).

    [18] A Gutin, V Kachorovskii, A Muraviev, M Shur. Plasmonic terahertz detector response at high intensities. Journal of Applied Physics, 112, 014508(2012).

    [19] I Khmyrova, Y Seijyou. Analysis of plasma oscillations in high-electron mobility transistorlike structures: Distributed circuit approach. Applied Physics Letters, 91, 143515(2007).

    [20] A Lisauskas, U Pfeiffer, E Öjefors. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. Journal of Applied Physics, 105, 114511(2009).

    [22] A Lisauskas, D Glaab, H G Roskos. Terahertz imaging with Si MOSFET focal-plane arrays, 7215, 72150J(2009).

    [23] R Al Hadi, H Sherry, J Grzyb. 1 THz CMOS imaging detector with an integrated lens, 1-4(2011).

    [25] R Kompfner, N T Williams. Backward-wave tubes. Proceedings of the IRE, 41, 1602-1611(1953).

    [26] J Ward, E Schlecht, G Chattopadhyay. 37535), 3, 1587-1590(2004).

    [27] L LI, L CHEN, J ZHU. Terahertz quantum cascade lasers with > 1 W output powers. Electronics Letters, 50, 309-310(2014).

    [28] [Online]. Available:(2019).

    [29] R Tauk, F Teppe, S Boubanga. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power. Applied Physics Letters, 89, 253511(2006).

    [30] V Mackowiak, J Peupelmann, Y Ma. Nepnoise equivalent power(2015).

    [31] J Zdanevičius, D Čibiraitė, K Ikamas. Field-Effect Transistor Based Detectors for Power Monitoring of THz Quantum Cascade Lasers, 8, 613-621(2018).

    [32] M Bauer, R Venckevičius, I Kašalynas. Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 4.25 THz. Optics express, 22, 19235-19241(2014).

    [33] S Boppel, A Lisauskas, M Bauer. Optimized Tera-FET detector performance based on an analytical device model verified up to 9 THz. 2013 38th International Conference on. IEEE, 1-1(2013).

    [34] K Ikamas, A Lisauskas, S Boppel. Efficient detection of 3 THz radiation from quantum cascade laser using silicon CMOS detectors. Terahertz Waves, 38, 1183-1188(2017).

    [35] Z Ahmad, A Lisauskas, H G Roskos. 4. IEEE International Electron Devices Meeting. IEEE, 1, 4(4).

    [36] S Boppel, A Lisauskas, M Mundt. CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz. IEEE Transactions on Microwave Theory and Techniques, 60, 3834-3843(2012).

    Tong FANG, Li-Yuan LIU, Zhao-Yang LIU, Peng FENG, Yuan-Yuan LI, Jun-Qi LIU, Jian LIU, Nan-Jian WU. A 3.0 THz detector in 65 nm standard CMOS process[J]. Journal of Infrared and Millimeter Waves, 2020, 39(1): 56
    Download Citation