• Advanced Photonics
  • Vol. 3, Issue 2, 025001 (2021)
Zhihao Zhou1, Wei Liu2, Jiajing He1, Lei Chen2..., Xin Luo1, Dongyi Shen2, Jianjun Cao3, Yaping Dan1, Xianfeng Chen2 and Wenjie Wan1,2,*|Show fewer author(s)
Author Affiliations
  • 1Shanghai Jiao Tong University, University of Michigan-Shanghai Jiao Tong University Joint Institute, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai, China
  • 2Shanghai Jiao Tong University, School of Physics and Astronomy, MOE Key Laboratory for Laser Plasmas and Collaborative Innovation Center of IFSA, Shanghai, China
  • 3Jiangnan University, School of Science, Wuxi, China
  • show less
    DOI: 10.1117/1.AP.3.2.025001 Cite this Article Set citation alerts
    Zhihao Zhou, Wei Liu, Jiajing He, Lei Chen, Xin Luo, Dongyi Shen, Jianjun Cao, Yaping Dan, Xianfeng Chen, Wenjie Wan, "Far-field super-resolution imaging by nonlinearly excited evanescent waves," Adv. Photon. 3, 025001 (2021) Copy Citation Text show less
    References

    [1] E. Abbe. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. für mikroskopische Anat., 9, 413-468(1873).

    [2] E. Betzig, J. K. Trautman. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science, 257, 189-195(1992).

    [3] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-795(2006).

    [4] D. J. Griffiths, D. F. Schroeter. Introduction to Quantum Mechanics(2018).

    [5] G. Binnig et al. Tunneling through a controllable vacuum gap. Appl. Phys. Lett., 40, 178-180(1982).

    [6] E. A. Ash, G. Nicholls. Super-resolution aperture scanning microscope. Nature, 237, 510-512(1972).

    [7] P. von Olshausen, A. Rohrbach. Coherent total internal reflection dark-field microscopy: label-free imaging beyond the diffraction limit. Opt. Lett., 38, 4066-4069(2013).

    [8] X. Liu et al. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging. Phys. Rev. Lett., 118, 076101(2017).

    [9] A. Archetti et al. Waveguide-PAINT offers an open platform for large field-of-view super-resolution imaging. Nat. Commun., 10, 1267(2019).

    [10] F. Wei et al. Wide field super-resolution surface imaging through plasmonic structured illumination microscopy. Nano Lett., 14, 4634-4639(2014).

    [11] N. Fang et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [12] Z. Jacob, L. V. Alekseyev, E. Narimanov. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express, 14, 8247-8256(2006).

    [13] Z. Liu et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).

    [14] C. Barsi, W. Wan, J. W. Fleischer. Imaging through nonlinear media using digital holography. Nat. Photonics, 3, 211-213(2009).

    [15] C. Barsi, J. W. Fleischer. Nonlinear Abbe theory. Nat. Photonics, 7, 639-643(2013).

    [16] J. Cao et al. Metal-free flat lens using negative refraction by nonlinear four-wave mixing. Phys. Rev. Lett., 113, 217401(2014).

    [17] S. Palomba et al. Optical negative refraction by four-wave mixing in thin metallic nanostructures. Nat. Mater., 11, 34-38(2012).

    [18] J. Cao et al. Nonlinear negative refraction by difference frequency generation. Appl. Phys. Lett., 108, 191101(2016).

    [19] S. Palomba, L. Novotny. Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Phys. Rev. Lett., 101, 056802(2008).

    [20] J. Renger et al. Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing. Phys. Rev. Lett., 103, 266802(2009).

    [21] H. Harutyunyan et al. Nonlinear dark-field microscopy. Nano Lett., 10, 5076-5079(2010).

    [22] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [23] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [24] M. G. L. Gustafsson. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U. S. A., 102, 13081-13086(2005).

    [25] C. W. Freudiger et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science, 322, 1857-1861(2008).

    [26] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [27] L. Tian et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope. Biomed. Opt. Express, 5, 2376-2389(2014).

    [28] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

    [29] J. Renger et al. Surface-enhanced nonlinear four-wave mixing. Phys. Rev. Lett., 104, 046803(2010).

    [30] L. Novotny, B. Hecht. Principles of Nano-Optics(2012).

    [31] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(2013).

    [32] N. Bloembergen, P. S. Pershan. Light waves at the boundary of nonlinear media. Phys. Rev., 128, 606-622(1962).

    [33] X. Guo et al. Nonreciprocal metasurface with space–time phase modulation. Light Sci. Appl., 8, 123(2019).

    [34] J. Cao et al. Femtosecond OPO based on MgO:PPLN synchronously pumped by a 532 nm fiber laser. Laser Phys., 27, 055402(2017).

    [35] R. W. Boyd. Nonlinear Optics(2008).

    [36] B. Simkhovich, G. Bartal. Plasmon-enhanced four-wave mixing for superresolution applications. Phys. Rev. Lett., 112, 056802(2014).

    [37] J. W. Goodman. Introduction to Fourier Optics(2005).

    [38] Q. Liu et al. Surface wave illumination Fourier ptychographic microscopy. Opt. Lett., 41, 5373-5376(2016).

    [39] H. U. Dodt et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods, 4, 331-336(2007).

    [40] A. Zumbusch, G. R. Holtom, X. S. Xie. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett., 82, 4142-4145(1999).

    [41] L. Gong et al. Higher-order coherent anti-Stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging. Nat. Photonics, 14, 115-122(2020).

    [42] X. Luo, T. Ishihara. Subwavelength photolithography based on surface-plasmon polariton resonance. Opt. Express, 12, 3055-3065(2004).

    CLP Journals

    [1] Zhihao Zhou, Wei Liu, Hengzhe Yan, Xianfeng Chen, Wenjie Wan, "Nonlinear thermal emission and visible thermometry," Adv. Photon. 4, 045001 (2022)

    Zhihao Zhou, Wei Liu, Jiajing He, Lei Chen, Xin Luo, Dongyi Shen, Jianjun Cao, Yaping Dan, Xianfeng Chen, Wenjie Wan, "Far-field super-resolution imaging by nonlinearly excited evanescent waves," Adv. Photon. 3, 025001 (2021)
    Download Citation