• Advanced Photonics
  • Vol. 3, Issue 2, 025001 (2021)
Zhihao Zhou1, Wei Liu2, Jiajing He1, Lei Chen2, Xin Luo1, Dongyi Shen2, Jianjun Cao3, Yaping Dan1, Xianfeng Chen2, and Wenjie Wan1、2、*
Author Affiliations
  • 1Shanghai Jiao Tong University, University of Michigan-Shanghai Jiao Tong University Joint Institute, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai, China
  • 2Shanghai Jiao Tong University, School of Physics and Astronomy, MOE Key Laboratory for Laser Plasmas and Collaborative Innovation Center of IFSA, Shanghai, China
  • 3Jiangnan University, School of Science, Wuxi, China
  • show less
    DOI: 10.1117/1.AP.3.2.025001 Cite this Article Set citation alerts
    Zhihao Zhou, Wei Liu, Jiajing He, Lei Chen, Xin Luo, Dongyi Shen, Jianjun Cao, Yaping Dan, Xianfeng Chen, Wenjie Wan. Far-field super-resolution imaging by nonlinearly excited evanescent waves[J]. Advanced Photonics, 2021, 3(2): 025001 Copy Citation Text show less
    References

    [1] E. Abbe. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. für mikroskopische Anat., 9, 413-468(1873).

    [2] E. Betzig, J. K. Trautman. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science, 257, 189-195(1992).

    [3] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-795(2006).

    [4] D. J. Griffiths, D. F. Schroeter. Introduction to Quantum Mechanics(2018).

    [5] G. Binnig et al. Tunneling through a controllable vacuum gap. Appl. Phys. Lett., 40, 178-180(1982).

    [6] E. A. Ash, G. Nicholls. Super-resolution aperture scanning microscope. Nature, 237, 510-512(1972).

    [7] P. von Olshausen, A. Rohrbach. Coherent total internal reflection dark-field microscopy: label-free imaging beyond the diffraction limit. Opt. Lett., 38, 4066-4069(2013).

    [8] X. Liu et al. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging. Phys. Rev. Lett., 118, 076101(2017).

    [9] A. Archetti et al. Waveguide-PAINT offers an open platform for large field-of-view super-resolution imaging. Nat. Commun., 10, 1267(2019).

    [10] F. Wei et al. Wide field super-resolution surface imaging through plasmonic structured illumination microscopy. Nano Lett., 14, 4634-4639(2014).

    [11] N. Fang et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [12] Z. Jacob, L. V. Alekseyev, E. Narimanov. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express, 14, 8247-8256(2006).

    [13] Z. Liu et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).

    [14] C. Barsi, W. Wan, J. W. Fleischer. Imaging through nonlinear media using digital holography. Nat. Photonics, 3, 211-213(2009).

    [15] C. Barsi, J. W. Fleischer. Nonlinear Abbe theory. Nat. Photonics, 7, 639-643(2013).

    [16] J. Cao et al. Metal-free flat lens using negative refraction by nonlinear four-wave mixing. Phys. Rev. Lett., 113, 217401(2014).

    [17] S. Palomba et al. Optical negative refraction by four-wave mixing in thin metallic nanostructures. Nat. Mater., 11, 34-38(2012).

    [18] J. Cao et al. Nonlinear negative refraction by difference frequency generation. Appl. Phys. Lett., 108, 191101(2016).

    [19] S. Palomba, L. Novotny. Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Phys. Rev. Lett., 101, 056802(2008).

    [20] J. Renger et al. Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing. Phys. Rev. Lett., 103, 266802(2009).

    [21] H. Harutyunyan et al. Nonlinear dark-field microscopy. Nano Lett., 10, 5076-5079(2010).

    [22] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [23] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [24] M. G. L. Gustafsson. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U. S. A., 102, 13081-13086(2005).

    [25] C. W. Freudiger et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science, 322, 1857-1861(2008).

    [26] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [27] L. Tian et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope. Biomed. Opt. Express, 5, 2376-2389(2014).

    [28] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

    [29] J. Renger et al. Surface-enhanced nonlinear four-wave mixing. Phys. Rev. Lett., 104, 046803(2010).

    [30] L. Novotny, B. Hecht. Principles of Nano-Optics(2012).

    [31] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(2013).

    [32] N. Bloembergen, P. S. Pershan. Light waves at the boundary of nonlinear media. Phys. Rev., 128, 606-622(1962).

    [33] X. Guo et al. Nonreciprocal metasurface with space–time phase modulation. Light Sci. Appl., 8, 123(2019).

    [34] J. Cao et al. Femtosecond OPO based on MgO:PPLN synchronously pumped by a 532 nm fiber laser. Laser Phys., 27, 055402(2017).

    [35] R. W. Boyd. Nonlinear Optics(2008).

    [36] B. Simkhovich, G. Bartal. Plasmon-enhanced four-wave mixing for superresolution applications. Phys. Rev. Lett., 112, 056802(2014).

    [37] J. W. Goodman. Introduction to Fourier Optics(2005).

    [38] Q. Liu et al. Surface wave illumination Fourier ptychographic microscopy. Opt. Lett., 41, 5373-5376(2016).

    [39] H. U. Dodt et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods, 4, 331-336(2007).

    [40] A. Zumbusch, G. R. Holtom, X. S. Xie. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett., 82, 4142-4145(1999).

    [41] L. Gong et al. Higher-order coherent anti-Stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging. Nat. Photonics, 14, 115-122(2020).

    [42] X. Luo, T. Ishihara. Subwavelength photolithography based on surface-plasmon polariton resonance. Opt. Express, 12, 3055-3065(2004).

    CLP Journals

    [1] Zhihao Zhou, Wei Liu, Hengzhe Yan, Xianfeng Chen, Wenjie Wan. Nonlinear thermal emission and visible thermometry[J]. Advanced Photonics, 2022, 4(4): 045001

    Zhihao Zhou, Wei Liu, Jiajing He, Lei Chen, Xin Luo, Dongyi Shen, Jianjun Cao, Yaping Dan, Xianfeng Chen, Wenjie Wan. Far-field super-resolution imaging by nonlinearly excited evanescent waves[J]. Advanced Photonics, 2021, 3(2): 025001
    Download Citation