• Infrared and Laser Engineering
  • Vol. 49, Issue 10, 20200333 (2020)
Wenqiang Fan, Zhichen Wang, Baogang Chen, Tao Chen, and Qichang An*
Author Affiliations
  • Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • show less
    DOI: 10.3788/IRLA20200333 Cite this Article
    Wenqiang Fan, Zhichen Wang, Baogang Chen, Tao Chen, Qichang An. Application of adaptive optics coherence tomography in retinal high resolution imaging[J]. Infrared and Laser Engineering, 2020, 49(10): 20200333 Copy Citation Text show less
    References

    [1] Jiaqiang Yang, Dewen Cheng, Qingfeng Wang, . Design of a novel wide view-field angle and anti-stray-light fundus camera. Acta Optica Sinica, 32, 1122002(2012).

    [2] Can Li, Shumei Song, Ying Liu, . Design of optical system for catadioptric fundus camera. Optics and Precision Engineering, 20, 1710-1717(2012).

    [3] Lili Liu, Tao Huang, Min Cai, . Retinal imaging system with large field of view based on liquid crystal adaptive optics. Optics & Precision Engineering, 21, 301-307(2013).

    [4] R H Webb, G W Hughes. Scanning laser ophthalmoscope. IEEE Transactions on Biomedical Engineering, BME-28, 488-492(1981).

    [5] R H Webb, G W Hughes, F C Delori. Confocal scanning laser ophthalmoscope. Applied Optics, 26, 1492-1499(1987).

    [6] E A Swanson, J A Izatt, M R Hee, et al. In vivo retinal imaging by optical coherence tomography. Optics Letters, 18, 1864-1866(1993).

    [7] K Shiroki. Fluorescein fundus angiography. Ophthalmology, 46, 1355-1364(2004).

    [8] M Wojtkowski, B Kaluzny, R J Zawadzki, et al. New directions in ophthalmic optical coherence tomography. Optom Vis Sci, 89, 524-542(2012).

    [9] D T Miller, K Kurokawa. Cellular scale imaging of transparent retinal structures and processes using adaptive optics optical coherence tomography. Annual Review of Vision Science, 6, 19.1-19.34(2020).

    [10] D Huang, E A Swanson, C P Lin, et al. Optical coherence tomography. Science, 254, 1178-1181(1991).

    [11] Keran Deng, Kai Wei, Kai Jin, . Research on high-contrast imaging performance of 1.8 m telescope sodium beacon adaptive optical system. Infrared and Laser Engineering, 49, 20200058(2020).

    [12] Jieling He, Ling Wei, Jinsheng Yang, . Phase fitting optimization method to laser beam shaping system based on deformable mirror. Laser & Optoelectronics Progress, 53, 020101(2016).

    [13] R D Simmonds, P S Salter, A Jesacher, et al. Three dimensional laser microfabrication in diamond using a dual adaptive optics system. Optics Express, 19, 24122-24128(2011).

    [15] Limin Jin, Hongxin Luo, Jie Wang, . Application of bimorph mirror in the optical system of synchrotron radiation light source. Chinese Optics, 10, 699-707(2017).

    [16] J Liang, D R Williams, D T Miller. Supernormal vision and high-resolution retinal imaging through adaptive optics. Journal of the Optical Society of America A Optics Image Science& Vision, 14, 2884-2892(1997).

    [17] Lixin Liu, Meiling Zhang, Zhaoqing Wu, . Application of adaptive optics in fluorescence microscope. Laser & Optoelectronics Progress, 57, 120001(2020).

    [18] A Chernyshov, U Sterr, F Riehle, et al. Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts. Appl Opt, 44, 6419-6425(2005).

    [19] S R Chamot, C Dainty, Simone Esposito. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor. Opt Express, 14, 518-526(2006).

    [20] Rueckel M, Denk W. Coherencegated wavefront sensing using a virtual Shack–Hartmann sens[C] SPIE, 2006, 6306: 63060H.

    [21] S Tuohy, A Gh Podoleanu. Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor. Opt Express, 18, 3458-3476(2010).

    [22] Markus Rueckel, Winfried Denk. Properties of coherence-gated wavefront sensing. J Opt Soc Am A Opt Image Vis, 24, 3517-3529(2007).

    [23] Wang Jingyu, Podoleanu A Gh. Timedomain coherencegated ShackHartmann wavefront sens[C] SPIE, 2011, 8091: 80911L.

    [24] Wang J, Podoleanu A G. Sweptsource coherencegated ShackHartmann wavefront sens[C] SPIE, 2012, 8213: 42.

    [25] Wang J, Podoleanu A G. Demonstration of depthresolved wavefront sensing using a sweptsource coherencegated ShackHartmann wavefront sens[C] SPIE Bios International Society f Optics Photonics, 2015.

    [26] B Hermann, EJ Fernández, A Unterhuber, et al. Adaptive-optics ultrahigh-resolution optical coherence tomography. Optics Letters, 29, 2142-2144(2004).

    [27] Y Zhang, J Rha, R Jonnal, et al. Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. Opt Express, 13, 4792-4811(2005).

    [28] R J Zawadzki, S M Jones, S S Olivier, et al. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt Express, 13, 8532-8546(2005).

    [29] D Merino, C Dainty, A Bradu, et al. Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. Opt Express, 14, 3345-3353(2006).

    [30] C E Bigelow, N V Iftimia, R D Ferguson, et al. Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging. Journal of the Optical Society of America A Optics Image Science & Vision, 24, 1327-1336(2007).

    [31] G H Shi, Z H Ding, Y Dai, et al. Adaptive optics optical coherence tomography based on a 61-element deformable mirror. Journal of Physics Conference Series, 48, 506-510(2006).

    [32] E J Fernández, B Povazay, B Hermann, et al. Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator. Vision Res, 45, 3432-3444(2005).

    [33] Y Jian, R J Zawadzki, M V Sarunic. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging. Biomed Opt, 18, 056007(2013).

    [34] Y Jian, J Xu, M A Gradowski, et al. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice. Biomed Opt Express, 5, 547-559(2014).

    [35] R J Zawadzki, S S Choi, S M Jones, et al. Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions. Journal of the Optical Society of America A Optics Image Science & Vision, 24, 1373(2007).

    [36] D X Hammer, R D Ferguson, M Mujat. Multimodal adaptive optics retinal imager: design and performance. J Opt Soc Am, A, 29, 2598-2607(2012).

    [37] R S Jonnal, J Qu, K Thorn, et al. En-face coherence gating of the retina with adaptive optics. Investigative Ophthalmology & Visualence, 44, U275-U275(2003).

    [38] M Pircher, R J Zawadzki, J W Evans, et al. Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography. Optics Letters, 33, 22-24(2008).

    [39] L Ginner, A Kumar, D Fechtig, et al. Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo. Optica, 4, 924-31(2017).

    [40] S R Chinn, E A Swanson, J G Fujimoto. Optical coherence tomography using a frequency-tunable optical source. Optics Letters, 22, 340-342(1997).

    [41] A Unterhuber, B Povazay, B Hermann, et al. In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid. Optics Express, 13, 3252-8(2005).

    [42] S Bourquin, A D Aguirre, I Hartl, et al. Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd: Glass laser and nonlinear fiber. Opt Express, 11, 3290-3297(2003).

    [43] H Lim, Y Jiang, Y Wang, et al. Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm. Optics Letters, 30, 1171-1180(2005).

    [44] S H Yun, G J Tearney, J F de Boer, et al. High-speed optical frequency-domain imaging. Opt Express, 11, 2953-2963(2003).

    [45] Yun S H, Tearney G J, Boer J F de, et al. Catheterbased optical frequency domain imaging at 36 frames per second[C] Coherence Domain Optical Methods Optical Coherence Tomography in Biomedicine IX, 2005: 56905916.

    [46] M Kowalczyk, T Martynkien, P Mergo, et al. Ultrabroadband wavelength-swept source based on total mode-locking of an Yb: CaF2 laser. Photonics Research, 7, 182-186(2019).

    [47] E C Lee, J F D Boer, M Mujat, et al. In vivo optical frequency domain imaging of human retina and choroid. Optics Express, 14, 4403-4411(2006).

    [48] K Kurokawa, K Sasaki, S Makita, et al. Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography. Opt Express, 18, 8515-8527(2010).

    [49] M Mujat, R D Ferguson, A H Patel, et al. High resolution multimodal clinical ophthalmic imaging system. Opt Express, 18, 11607-11621(2010).

    [50] I Grulkowski, J J Liu, B Potsaid, et al. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with verticalcavity surface emitting lasers. Biomed Opt Express, 3, 2733-2751(2012).

    [51] T Klein, W Wieser, L Reznicek, et al. Multi-MHz retinal OCT. Biomed Opt Express, 4, 1890-1908(2013).

    [52] Y Jian, S Lee, M J Ju, et al. Lens-based wavefront sensorless adaptive optics swept source OCT. Entific Reports, 6, 27620(2016).

    [53] M Azimipour, J V Migacz, R J Zawadzki, et al. Functional retinal imaging using adaptive optics swept-source OCT at 1.6 MHz. Optica, 6, 300-303(2019).

    [54] M Azimipour, R S Jonnal, J S Werner, et al. Coextensive synchronized SLO-OCT with adaptive optics for human retinal imaging. Opt Lett, 44, 4219-4222(2019).

    [56] Junle Qu, R S Jonnal, K E Thorn, . Single cell imaging of the living human retina using adaptive optics and optical coherence tomography. Acta Biophysica Sinica, 20, 104-108(2004).

    [57] Yudong Zhang, Wenhan Jiang, Guohua Shi, . Application of adaptive optics in ophthalmology. Science in China, 37, 68-74(2007).

    [60] R X Liu, X L Zheng, D Y Li, et al. Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera. Chin Phys B, 23, 094211(2014).

    [61] Xianliang Zneng, Ruixue Liu, Mingliang Xia, . Retinal correction imaging system based on liquid crystal adaptive optics. Chinese Optics, 7, 98-104(2014).

    [63] E Fernández, A Unterhuber, P Prieto, et al. Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser. Opt Express, 13, 400-409(2005).

    [64] R E Bedford, G Wyszecki. Axial chromatic aberration of the human eye. J Opt Soc Am, 47, 564-565(1957).

    [65] W M Harmening, P Tiruveedhula, A Roorda, et al. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye. Biomed Opt Express, 3, 2066-2077(2012).

    [66] E J Fernández, B Hermann, B Povazay, et al. Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. Opt Express, 16, 11083-11094(2008).

    [67] R J Zawadzki, B Cense, Y Zhang, et al. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction. Opt Express, 16, 8126-8143(2008).

    [68] R J Zawadzki, S M Jones, S Pilli, et al. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging. Biomed Opt Express, 2, 1674-1686(2011).

    [69] F Felberer, J S Kroisamer, B Baumann, et al. Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo. Biomed Opt Express, 5, 439-456(2014).

    [70] O P Kocaoglu, S Lee, R S Jonnal, et al. Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics. Biomed Opt Express, 2, 748-763(2011).

    [71] M Azimipour, R J Zawadzki, I Gorczynska, et al. Intraframe motion correction for raster-scanned adaptive optics images using strip-based cross-correlation lag biases. PLOS ONE, 13, e0206052(2018).

    [72] O P Kocaoglu, R D Ferguson, R S Jonnal, et al. Adaptive optics optical coherence tomography with dynamic retinal tracking. Biomed Opt Express, 5, 2262-2284(2014).

    [73] P Bedggood, M Daaboul, R Ashman, et al. Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging. Biomed Opt, 13, 024008(2008).

    [74] J Thaung, P Knutsso. Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging. Opt Express, 17, 4454-4467(2009).

    [75] T Klein, W Wieser, C M Eigenwillig, et al. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Opt Express, 19, 3044-3062(2011).

    [76] S Bonora, R J Zawadzki. Wavefront sensorless modal deformable mirror correction in adaptive optics optical coherence tomography. Opt Lett, 38, 4801-4804(2013).

    [77] K S Wong, Y Jian, M Cua, et al. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography. Biomed Opt Express, 6, 580-590(2015).

    [78] P Xiao, M Fink, A C Boccara. Adaptive optics full-field optical coherence tomography. Biomed Opt, 21, 121505(2016).

    [79] S Bonora, Y Jian, P Zhang, et al. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens. Opt Express, 23, 21931-21941(2015).

    [80] H R G W Verstraete, S Wahls, J Kalkman, et al. Model-based sensor-less wavefront aberration correction in optical coherence tomography. Opt Lett, 40, 5722-5725(2015).

    [81] J Polans, B Keller, O M Carrasco Zevallos, et al. Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions. Biomed Opt Express, 8, 16-37(2017).

    [82] H R G W Verstraete, M Heisler, M J Ju, et al. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging. Biomedical Optics Express, 8, 2261(2017).

    [83] A Kumar, T Kamali, R Platzer, et al. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT. Biomed Opt Express, 6, 1124-1134(2015).

    [84] P Pande, Y Z Liu, F A South, et al. Automated computational aberration correction method for broadband interferometric imaging techniques. Opt Lett, 41, 3324-3327(2016).

    [85] Y Xu, Y Z Liu, S A Boppart, et al. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography. Appl Opt, 55, 2034-2041(2016).

    [86] D Hillmann, H Spahr, C Hain, et al. Aberration free volumetric high-speed imaging of in vivo retina. Sci Rep, 6, 35209(2016).

    [87] P Xiao, M Fink, A C Boccara. Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations. Opt Lett, 41, 3920-3923(2016).

    [88] Laurin Ginner, Tilman Schmoll, Abhishek Kumar, et al. Holographic line field En-face OCT with digital adaptive optics in the retina in vivo. Biomedical Optics Express, 9, 472-485(2018).

    [89] F A South, K Kurokawa, Z Liu, et al. Combined hardware and computational optical wavefront correction. Biomed Opt Express, 9, 2562-2574(2018).

    [90] P D Y Graciano, A Angulo, D Lopez-Mago, et al. Spectrally-resolved Hong-Ou-Mandel interferometry for quantum-optical coherence tomography. Photonics Research, 8, 1023-1034(2020).

    Wenqiang Fan, Zhichen Wang, Baogang Chen, Tao Chen, Qichang An. Application of adaptive optics coherence tomography in retinal high resolution imaging[J]. Infrared and Laser Engineering, 2020, 49(10): 20200333
    Download Citation