• Ultrafast Science
  • Vol. 3, Issue 1, 0023 (2023)
Tianyang Yan1 and Lingfei Ji2、3、*
Author Affiliations
  • 1Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.
  • 2Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
  • 3Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing 100124, China.
  • show less
    DOI: 10.34133/ultrafastscience.0023 Cite this Article
    Tianyang Yan, Lingfei Ji. Ultrafast Laser Filamentation in Transparent Solids[J]. Ultrafast Science, 2023, 3(1): 0023 Copy Citation Text show less
    References

    [1] Braun A, Korn G, Liu X, Du D, Squier J, Mourou G. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt Lett. 1995;20(1):Article 73.

    [2] Chin SL, Wang T-J, Marceau C, Wu J, Liu JS, Kosareva O, Panov N, Chen YP, Daigle J-F, Yuan S, et al. Advances in intense femtosecond laser filamentation in air. Laser Phys. 2012;22(1):1–53.

    [3] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media. Phys Rep. 2007;441(2-4):47–189.

    [4] Hercher M. Laser induced damage in transparent media. J Opt Soc Am. 1964;54:Article 563.

    [5] Strickland D, Mourou G. Compression of amplified chirped optical pulses. Opt Commun. 1985;56(3):219–221.

    [6] Kandidov VP, Shlenov SA, Kosareva OG. Filamentation of high-power femtosecond laser radiation. Quant Electron. 2009;39(3):205–228.

    [7] Chin SL, Hosseini SA, Liu W, Luo Q, Théberge F, Aközbek N, Becker A, Kandidov VP, Kosareva OG, Schroeder H. The propagation of powerful femtosecond laser pulses in optical media: Physics, applications, and new challenges. Can J Phys. 2005;83(9):863–905.

    [8] Kasparian J, Wolf J-P. Physics and applications of atmospheric nonlinear optics and filamentation. Opt Express. 2008;16(1):Article 466.

    [9] Geints YE, Zemlyanov AA. Dynamics of femtosecond synthesized coronary profile laser beam filamentation in air. J Optic. 2021;23(10):1–53.

    [10] Papazoglou DG, Abdollahpour D, Tzortzakis S. Ultrafast electron and material dynamics following femtosecond filamentation induced excitation of transparent solids. Appl Phys Mater Sci Process. 2014;114(1):161–168.

    [11] Liu W, Petit S, Becker A, Aközbek N, Bowden CM, Chin SL. Intensity clamping of a femtosecond laser pulse in condensed matter. Opt Commun. 2002;202(1-3):189–197.

    [12] Watanabe W, Tamaki T, Ozeki Y, Itoh K. Filamentation in ultrafast laser material processing. Berlin, Heidelberg: Springer; 2011.

    [13] Kasparian J, Sauerbrey R, Chin SL. The critical laser intensity of self-guided light filaments in air. Appl Phys B Lasers Opt. 2000;71(6):877–879.

    [14] Liu WW. Intensity clamping during femtosecond laser filamentation. Chin J Phys. 2014;52(1):465–489.

    [15] Amina JL, Yan T, Wang Y, Li L. Characteristics of 1064nm picosecond laser induced filamentary tracks and damages in sapphire. Opt Laser Technol. 2019;116:232–238.

    [16] Marburger JH. Self-focusing: Theory. Progress Quant Electron. 1975;4:35–110.

    [17] Galinis J, Tamošauskas G, GraŽulevičiute I, Keblyte E, Jukna V, Dubietis A. Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses. Phys Rev A - Atom Mol Optic Phys. 2015;92(3):Article 033857.

    [18] Dai Y, Patel A, Song J, Beresna M, Kazansky PG. Void-nanograting transition by ultrashort laser pulse irradiation in silica glass. Opt Express. 2016;24(17):Article 19344.

    [19] Poumellec B, Lancry M, Chahid-Erraji A, Kazansky PG. Modification thresholds in femtosecond laser processing of pure silica: Review of dependencies on laser parameters invited. Optic Mater Express. 2011;1(4):Article 766.

    [20] Isaacs J, Hafizi B, Johnson LA, Rosenthal EW, Mrini L, Peñano J. Modeling the propagation of a high-average-power train of ultrashort laser pulses. Opt Express. 2022;30(13):Article 22306.

    [21] Couairon A, Bergé L. Light filaments in air for ultraviolet and infrared wavelengths. Phys Rev Lett. 2002;88(13):4.

    [22] Papazoglou DG, Zergioti I, Tzortzakis S, Sgouros G, Maravelias G, Christopoulos S, Fotakis C. Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica. Appl Phys Mater Sci Process. 2005;81(2):241–244.

    [23] Sowa S, Watanabe W, Nishii J, Itoh K. Filamentary cavity formation in poly(methyl methacrylate) by single femtosecond pulse. Appl Phys Mater Sci Process. 2005;81(8):1587–1590.

    [24] Gražulevičiūtė I, Skeivytė M, Keblytė E, Galinis J, Tamošauskas G, Dubietis A. Supercontinuum generation in YAG and sapphire with picosecond laser pulses. Lith J Phys. 2015;55(2):110–116.

    [25] Apeksimov DV, Golik SS, Zemlyanov AA, Kabanov AM, Mayor AY, Petrov AV. Dynamics of the structure of multiple filamentation domain of laser pulses in glass. Atmos Ocean Optic. 2017;30(3):222–225.

    [26] Nguyen NT, Saliminia A, Liu W, Chin SL, Vallée R. Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses. Opt Lett. 2003;28(17):Article 1591.

    [27] Feigenbaum E, Laurence TA. Filament damage formation in fused silica glass as a result of 1–50 ps near-infrared laser pulses. Appl Opt. 2017;56(13):Article 3666.

    [28] Dharmadhikari JA, Deshpande RA, Nath A, Dota K, Mathur D, Dharmadhikari AK. Effect of group velocity dispersion on supercontinuum generation and filamentation in transparent solids. Appl Phys B Lasers Opt. 2014;117(1):471–479.

    [29] Moll KD, Gaeta AL. Role of dispersion in multiple-collapse dynamics. Opt Lett. 2004;29(9):Article 995.

    [30] Paipulas D, Balskiene A, Sirsutkaitis V. Experimental study of filamentation and supercontinuum generation in laser-modified fused silica. Lith J Phys. 2012;52(4):327–333.

    [31] Javaux Léger C, Mishchik K, Dematteo-Caulier O, Skupin S,Chimier B, Duchateau G, Bourgeade A, Hönninger C, Mottay E, Lopez J, et al. Effects of burst mode on transparent materials processing. Laser-Based Micro- Nanoprocess IX. 2015;9351:132–141.

    [32] Esser D, Rezaei S, Li J, Herman PR, Gottmann J. Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses. Opt Express. 2011;19(25):Article 25632.

    [33] Sun W, Sun W-g, Yan T-y, Wang Y-h, Ji L-f. Spatiotemporal evolution of high-aspect-ratio filamentary trace in sapphire of picosecond pulse burst-mode for laser lift-off. J Cent South Univ. 2022;29(10):3304–3311.

    [34] Ma R, Ji L, Yan T, Zhang L, Zhang T. Influence of ambient gases on plasma dynamics of ultrafast laser-induced filamentation in sapphires. Opt Express. 2020;28(14):Article 20461.

    [35] Liu W, Théberge F, Arévalo E, Gravel J-F, Becker A, Chin SL. Experiment and simulations on the energy reservoir effect in femtosecond light filaments. Opt Lett. 2005;30(19):Article 2602.

    [36] Liu W, Gravel JF, Théberge F, Becker A, Chin SL. Background reservoir: Its crucial role for long-distance propagation of femtosecond laser pulses in air. Appl Phys B Lasers Opt. 2005;80(7):857–860.

    [37] Apeksimov DV, Golik SS, Zemlyanov AA, Iglakova AN, Kabanov AM, Kuchinskaya OI, Matvienko GG, Oshlakov VK, Petrov AV, Sokolova EB. Multiple filamentation of collimated laser radiation in water and glass. Atmos Ocean Optic. 2016;29(2):135–140.

    [38] Geints YE, Golik SS, Zemlyanov AA, Kabanov AM, Petrov AV. Microstructure of the multiple-filamentation zone formed by femtosecond laser radiation in a solid dielectric. Quant Electron. 2016;46(2):133–141.

    [39] Wang J, Guo Y, Song X, Lin J. Flexible manipulation of the onset and terminal positions of femtosecond laser filamentation in fused silica via controlling beam profile before axicon. Opt Commun. 2022;516:Article 128262.

    [40] Lü J-Q, Li P-P, Wang D, Tu C, Li Y, Wang H-T. Extending optical filaments with phase-nested laser beams. Photo Res. 2018;6(12):Article 1130.

    [41] Li J, Tan W, Si J, Tang S, Kang Z, Hou X. Control of the spatial characteristics of femtosecond laser filamentation in glass via feedback-based wavefront shaping with an annular phase mask. Opt Express. 2021;29(4):Article 5972.

    [42] Camino A, Hao Z, Liu X, Lin J. Control of laser filamentation in fused silica by a periodic microlens array. Opt Express. 2013;21(7):Article 7908.

    [43] Majus D, Jukna V, Valiulis G, Dubietis A. Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams. Phys Rev A - Atomic, Mol Optic Phys. 2009;79(3):Article 033843.

    [44] Li D, Xi T, Zhang L, Tao H, Gao X, Lin J, Hao Z. Interference-induced filament array in fused silica. Opt Express. 2017;25(20):Article 23910.

    [45] Wang J, Guo Y, Song X, Guo K, Lin J. Multi-dimensional control of femtosecond laser filaments by inserting a wedge plate in the forced focusing region. Phys Plasma. 2022;29(1):Article 012301.

    [46] Li D, Chang J, Xu L, Zhang L, Xi T, Hao Z. Free control of filaments rotating induced by vortex femtosecond laser beams interference in fused silica. Opt Laser Technol. 2022;150:Article 107974.

    [47] Wang J, Guo Y, Song X, Lin J. Manipulation of femtosecond laser multi-filament array by spatiotemporal phase modulation. Opt Commun. 2021;495:Article 127113.

    [48] Bérubé J-P, Vallée R, Bernier M, Kosareva O, Panov N, Kandidov V, Chin SL. Self and forced periodicarrangement of multiple filaments in glass. Opt Express. 2010;18(3):Article 1801.

    [49] Li PP, Cai MQ, Lü JQ, Wang D, Liu GG, Qian SX, Li Y, Tu C, Wang HT. Control of femtosecond multi-filamentation in glass by designable patterned optical fields. AIP Adv. 2016;6(12):Article 125103.

    [50] Li D, Chang J, Xi T, Li D, Ji L, Liang W, Hao Z, Zhang L. Filament-necklace generated by femtosecond vector beams in fused silica. Opt Commun. 2022;2023(533):Article 129283.

    [51] Lin Z, Hong M. Femtosecond laser precision engineering: From micron, submicron, to nanoscale. Ultraf Sci. 2021;2021:Article 9783514.

    [52] Ams M, Marshall GD, Dekker P, Dubov M, Mezentsev VK, Bennion I, Withford MJ. Investigation of ultrafast laser-photonic material interactions: Challenges for directly written glass photonics. IEEE J Select Topic Quant Electron. 2008;14(5):1370–1388.

    [53] Gamaly EG, Rode AV. Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations. Progress Quant Electron. 2013;37(5):215–323.

    [54] Houard A, Jukna V, Point G, André Y-B, Klingebiel S, Schultze M, Michel K, Metzger T, Mysyrowicz A. Study of filamentation with a high power high repetition rate ps laser at 103 μm. Opt Express. 2016;24(7):Article 7437.

    [55] Onda S, Watanabe W, Yamada K, Itoh K, Nishii J. Study of filamentary damage in synthesized silica induced by chirped femtosecond laser pulses. J Opt Soc Am B. 2005;22(11):Article 2437.

    [56] Sudrie L, Franco M, Prade B, Mysyrowicz A. Study of damage in fused silica induced by ultra-short IR laser pulses. Opt Commun.2001;191(3-6):333–339.

    [57] Sudrie L, Couairon A, Franco M, Lamouroux B, Prade B, Tzortzakis S, Mysyrowicz A. Femtosecond laser-induced damage and filamentary propagation in fused silica. Phys Rev Lett. 2002;89(18):Article 186601.

    [58] Couairon A, Sudrie L, Franco M, Prade B, Mysyrowicz A. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses. Phys Rev B - Condens Matter Mater Phys. 2005;71(12):Article 125435.

    [59] Will M, Nolte S, Chichkov BN, Tünnermann A. Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses. Appl Opt. 2002;41(21):Article 4360.

    [60] Poumellec B, Lancry M. Damage thresholds in femtosecond laser processing of silica: A review. Paper presented at: Optics InfoBase Conference Papers. 2010.

    [61] Shimotsuma Y, Kazansky PG, Qiu J, Hirao K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys Rev Lett. 2003;91(24):Article 247405.

    [62] Ashkenasi D, Müller G, Rosenfeld A, Stoian R, Hertel IV,Bulgakova NM, Campbell EEB. Fundamentals and advantages of ultrafast micro-structuring of transparent materials. Appl Phys Mater Sci Process. 2003;77(2):223–228.

    [63] Schaffer CB, Jamison AO, Mazur E. Morphology of femtosecond laser-induced structural changes in bulk transparent materials. Appl Phys Lett. 2004;84(9):1441–1443.

    [64] Benayas A, Jaque D, McMillen B, Chen KP. Thermal stability of microstructural and optical modifications induced in sapphire by ultrafast laser filamentation. J Appl Phys. 2010;107(3):Article 033522.

    [65] Zhang B, Wang L, Chen F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser Photo Rev. 2020;14(8):Article 1900407.

    [66] Ródenas A, Torchia GA, Lifante G, Cantelar E, Lamela J, Jaque F, Roso L, Jaque D. Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: Micro-spectroscopy experiments and beam propagation calculations. Appl Phys B Lasers Opt. 2009;95(1):85–96.

    [67] Burghoff J, Hartung H, Nolte S, Tünnermann A. Structural properties of femtosecond laser-induced modifications in LiNbO3. Appl Phys Mater Sci Process. 2007;86(2):165–170.

    [68] Paipulas D, Kudriašov V, Malinauskas M, Smilgevǐcius V, Sirutkaitis V. Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses. Appl Phys Mater Sci Process. 2011;104(3):769–773.

    [69] Papazoglou DG, Tzortzakis S. Physical mechanisms of fused silica restructuring and densification after femtosecond laser excitation invited. Optic Mater Express. 2011;1(4):Article 625.

    [70] Hernandez-Rueda J, Clarijs J, Van Oosten D, Krol DM. The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica. Appl Phys Lett. 2017;110(16):Article 161109.

    [71] Yan T, Ji L, Ma R, Amina LZ, Lin Z. Modification characteristics of filamentary traces induced by loosely focused picosecond laser in sapphire. Ceram Int. 2020;46(10):16074–16079.

    [72] Jing C, Qi X, Wang Z, Ma B, Ding C. Comparative study of femtosecond filamentation properties in the classical model and the full model for different incident pulse durations. J Optic. 2019;21(6):Article 065503.

    [73] Dorr MR, Garaizar FX, Hittinger JAF. Simulation of laser plasma filamentation using adaptive mesh refinement. J Comput Phys. 2002;177(2):233–263.

    [74] Couairon A, Brambilla E, Corti T, Majus D, de O, Kolesik M. Practitioner’s guide to laser pulse propagation models and simulation. Europe Phys J: Special Topic. 2011;199(1):5–76.

    [75] Wang C, Zhao Q, Qian J, Li Y, Wang G, Zhang Y, Pan H, Bao Z, Bai F, Fan W. Propagation of focused ultrashort pulse laser during micromachining of sapphire. Paper presented at: Pacific Rim Laser Damage 2015: Optical Materials for High-Power Lasers. 2015.

    [76] Capuano L, de Zeeuw D, Römer GRBE. Towards a numerical model of picosecond laser-material interaction in bulk sapphire. J Laser Micro Nanoeng. 2018;13(3):166–177.

    [77] Sudrie L, Tzortzakis S, Franco M, Prade B, Mysyrowicz A, Couairon A, Bergé L. Self-guided propagation of ultrashort IR laser pulses in fused silica. Phys Rev Lett. 2001;87(21):Article 213902.

    [78] Blonskyi I, Kadan V, Shynkarenko Y, Yarusevych O, Korenyuk P,Puzikov V, Grin’ L. Periodic femtosecond filamentation in birefringent media. Appl Phys B Lasers Opt. 2015;120(4):705–710.

    [79] Yan T, Ji L, Sun W. Characteristics and formation mechanism of filamentary plasma string induced by single picosecond laser pulse in sapphire. Appl Phys Mater Sci Process. 2022;128(1):1–8.

    [80] Brodeur A, Chien CY, Ilkov FA, Chin SL, Kosareva OG, Kandidov VP. Moving focus in the propagation of ultrashort laser pulses in air. Opt Lett. 1997;22(5):Article 304.

    [81] Sun Q, Jiang H, Liu Y, Zhou Y, Yang H, Gong Q. Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica. J Opt A Pure Appl Opt. 2005;7(11):655–659.

    [82] Wu Z, Jiang H, Yang H, Gong Q. The refocusing behaviour of a focused femtosecond laser pulse in fused silica. J Opt A Pure Appl Opt. 2003;5(2):102–107.

    [83] Wu Z, Jiang H, Luo L, Guo H, Yang H, Gong Q. Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica. Opt Lett. 2002;27(6):Article 448.

    [84] Wu Z, Jiang H, Sun Q, Yang H, Gong Q. Filamentation and temporal reshaping of a femtosecond pulse in fused silica. Phys Rev A - Atom Mol Optic Phys. 2003;68(6):8.

    [85] Mlejnek M, Wright EM, Moloney JV. Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt Lett. 1998;23(5):382–384.

    [86] Martynovich EF, Dresviansky VP, Kuznetsov AV, Kuzakov AS, Popov AA, Alekseev SV, Losev VF, Ratakhin AN, Bagayev SN. Simulation of filamentation of single femtosecond laser pulses in LiF. Laser Phys. 2014;24(7):Article 074001.

    [87] Skupin S, Nuter R, Bergé L. Optical femtosecond filaments in condensed media. Phys Rev A. 2006;74(4):Article 043813.

    [88] Lim K, Durand M, Baudelet M, Richardson M. Transition from linear-to nonlinear-focusing regime in filamentation. Sci Rep. 2014;4(1):7217.

    [89] Amina, Ji LF, Yan TY, Ma R. Ionization behavior and dynamics of picosecond laser filamentation in sapphire. Opto-Electron Adv. 2019;2(8):Article 190003.

    [90] Nagar GC, Dempsey D, Shim B. Wavelength scaling of electron collision time in plasma for strong field laser-matter interactions in solids. Commun Phys. 2021;4(1):Article 96.

    [91] Jukna V, Galinis J, Tamosauskas G, Majus D, Dubietis A.Infrared extension of femtosecond supercontinuum generated by filamentation in solid-state media. Appl Phys B Lasers Opt. 2014;116(2):477–483.

    [92] Chin SL, Théberge F, Liu W. Filamentation nonlinear optics. Appl Phys B Lasers Opt. 2007;86(3):477–483.

    [93] Watanabe W, Tamaki T, Itoh K. Filamentation in laser microprocessing and microwelding. Proc SPIE. 2007;6733:Article 67332F.

    [94] Ródenas A, Maestro LM, Ramírez MO, Torchia GA, Roso L, Chen F, Jaque D. Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO: LiNbO3 optical waveguides. J Appl Phys. 2009;106(1):Article 013110.

    [95] Saliminia A, Vallée R, Chin SL. Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm. Opt Commun. 2005;256(4-6):422–427.

    [96] Watanabe W, Asano T, Yamada K, Itoh K, Nishii J. Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses. Opt Lett. 2003;28(24):2491.

    [97] Watanabe W, Note Y, Itoh K. Fabrication of multimode interference waveguides in glass by use of a femtosecond laser. Opt Lett. 2005;30(21):2888.

    [98] Tarasova MA, Khorkov KS, Kochuev DA, Ivaschenko AV, Prokoshev VG. Formation of channels with changed refractive index at the filamentation of femtosecond laser radiation in quartz glass. J Phys Conf Ser. 2019;1164(1):Article 012023.

    [99] Dharmadhikari JA, Bernard R, Bhatnagar AK, Mathur D, Dharmadhikari AK. Axicon-based writing of waveguides in BK7 glass. Opt Lett. 2013;38(2):172.

    [100] Cho S-H, Kumagai H, Midorikawa K. Fabrication of multi-core structures in an optical fiber using plasma self-channeling. Opt Express. 2003;11(15):1780.

    [101] Li L, Nie W, Li Z, Zhang B, Wang L, Haro-Gonzalez P, Jaque D, Vazquez De Aldana JR, Chen F. Femtosecond laser writing of optical waveguides by self-induced multiple refocusing in LiTaO3 crystal. J Lightwave Technol. 2019;37(14):3452–3458.

    [102] Zhang B, He S, Yang Q, Liu H, Wang L, Chen F. Femtosecond laser modification of 6H–SiC crystals for waveguide devices. Appl Phys Lett. 2020;116(11):Article 111903.

    [103] Kroesen S, Horn W, Imbrock J, Denz C. Electro–optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing. Opt Express. 2014;22(19):23339.

    [104] Wu P, Jiang X, Zhang B, He S, Yang Q, Li X, Ren Y, Chen F, Liu H. Mode-controllable waveguide fabricated by laser-induced phase transition in KTN. Opt Express. 2020;28(17):25633.

    [105] Liebers R, Mauer C, Nissel J, Jotz M, Wagner F. Waveguides in AR devices: Optimized cutting processes for transparent materials with laser technology. Proc SPIE. 2022;11988:Article 1198805.

    [106] Lee S, Nikumb S. Characteristics of filament induced Dammann gratings fabricated using femtosecond laser. Opt Laser Technol. 2007;39(7):1328–1333.

    [107] Yamada K, Watanabe W, Li Y, Itoh K, Nishii J. Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses. Opt Lett. 2004;29(16):1846.

    [108] Ran L, Qu S. Self-assembled volume vortex grating induced by femtosecond laser pulses in glass. Curr Appl Phys. 2009;9(6):1210–1212.

    [109] Gaižauskas E, Kudriašov V, Vaičaitis V, Sirutkaitis V. Fabrication of the refractive index gratings in optical glasses by the filamentary propagation of femtosecond laser pulses. Proc SPIE. 2006;6403:Article 640303.

    [110] Ertorer E, Haque M, Li J, Herman PR. Femtosecond laser filaments for rapid and flexible writing of fiber Bragg grating. Opt Express. 2018;26(7):9323.

    [111] Xu X, He J, He J, Xu B, Chen R, Wang Y, Yang Y, Wang Y. Efficient point-by-point Bragg grating inscription in sapphire fiber using femtosecond laser filaments. Opt Lett. 2021;46(11):2742.

    [112] Rahnama A, Mahmoud Aghdami K, Kim YH, Herman PR. Ultracompact lens-less “spectrometer in fiber” based on chirped filament-array gratings. Adv Photon Res. 2020;1(2):Article 2000026.

    [113] Rahnama A, Dadalyan T, Mahmoud Aghdami K, Galstian T, Herman PR. In-fiber switchable polarization filter based on liquid crystal filled hollow-filament Bragg gratings. Adv Opt Mater. 2021;9(19):2100054.

    [114] Mahmoud Aghdami K, Rahnama A, Ertorer E, Herman PR. Laser nano-filament explosion for enabling open-grating sensing in optical fibre. Nat Commun. 2021;12(1):6344.

    [115] Rahnama A, Mahlooji H, Djogo G, Azhari F, Herman PR. Filament-arrayed Bragg gratings for azimuthally resolved displacement sensing in single-mode fibers. Opt Express. 2022;30(3):4189.

    [116] Varel H, Ashkenasi D, Rosenfeld A, Wähmer M, Campbell EEB. Micromachining of quartz with ultrashort laser pulses. Appl Phys Mater Sci Process. 1997;65(4-5):367–373.

    [117] Vartapetov SK, Ganin DV, Lapshin KE, Obidin AZ. Femtosecond-laser fabrication of cyclic structures in the bulk of transparent dielectrics. Quantum Elec. 2015;45(8):725–730.

    [118] Butkus S, Paipulas D, Sirutkaitis R, Gaižauskas E, Sirutkaitis V. Rapid cutting and drilling of transparent materials via femtosecond laser filamentation. J Laser Micro Nanoeng. 2014;9(8):213–220.

    [119] Butkus S, Gaižauskas E, Paipulas D, Viburys Z, Kaškelye D, Barkauskas M, Alesenkov A, Sirutkaitis V. Rapid microfabrication of transparent materials using filamented femtosecond laser pulses. Appl Phys Mater Sci Process. 2014;114(1):81–90.

    [120] Butkus S, Paipulas D, Kaškelytė D, Gaižauskas E, Sirutkaitis V. Improvement of cut quality in rapid-cutting of glass method via femtosecond laser filamentation. J Laser Micro Nanoeng. 2015;10(1):59–63.

    [121] Ahmed F, Lee MS, Sekita H, Sumiyoshi T, Kamata M. Display glass cutting by femtosecond laser induced single shot periodic void array. Appl Phys Mater Sci Process. 2008;93(1):189–192.

    [122] Werr F, Eppelt U, Müllers L, De Ligny L. Ultra-short-pulse laser filaments for float glass cutting: Influence of laser parameters on micro cracks formation. Front Phys. 2022;10:862419.

    [123] Li J, Ertorer E, Herman PR. Ultrafast laser burst-train filamentation for non-contact scribing of optical glasses. Opt Express. 2019;27(18):25078.

    [124] Yan T, Ji L, Li L, Amina, Wang W, Lin Z, Qiang Y. Submicron fine cutting-surface of sapphire obtained by chemical corrosion assisted picosecond laser fulmination technology. Chin J Lasers. 2017;44(10):Article 1002002.

    [125] Butkus S, Paipulas D, Viburys Ž, Alesenkov A, Gaižauskas E, Kaškelyte D, Barkauskas M, Sirutkaitis V. Rapid microfabrication of transparent materials using a filamented beam of the IR femtosecond laser. Proc SPIE. 2014;8972:Article 897216.

    [126] Miyamoto I, Cvecek K, Schmidt M. Advances of laser welding technology of glass -science and technology. J Laser Micro Nanoeng. 2020;15(2):63–76.

    [127] Tamaki T, Watanabe W, Nishii J, Itoh K. Welding of transparent materials using femtosecond laser pulses. Jpn J Appl Phys. 2005;44(5L):Article L687.

    [128] Chen J, Carter RM, Thomson RR, Hand DP. Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding. Opt Express. 2015;23(14):18645.

    [129] Zhang J, Chen S, Lu H, Huang M, Li J, Guo L, Lue Q, Zhang Q. The effect of gap on the quality of glass-to-glass welding using a picosecond laser. 2020;134:Article 106248.

    [130] Ozeki Y, Inoue T, Tamaki T, Yamaguchi H, Onda S, Watanabe W, Sano T, Nishiuchi S, Hirose A, Itoh K. Direct welding between copper and glass substrates with femtosecond laser pulses. Appl Phys Express. 2008;1(8):Article 082601.

    [131] Zhang G, Stoian R, Zhao W, Cheng G. Femtosecond laser Bessel beam welding of transparent to non-transparent materials with large focal-position tolerant zone. Opt Express. 2018;26(2):917.

    [132] Chambonneau M, Li Q, Fedorov VY, Blothe M, Schaarschmidt K, Lorenz M, Tzortzakis S, Nolte S. Taming ultrafast laser filaments for optimized semiconductor–metal welding. Laser Photonics Rev. 2021;15(2):Article 2000433.

    Tianyang Yan, Lingfei Ji. Ultrafast Laser Filamentation in Transparent Solids[J]. Ultrafast Science, 2023, 3(1): 0023
    Download Citation