• Laser & Optoelectronics Progress
  • Vol. 58, Issue 11, 1123002 (2021)
Yan Lu1、3, Xiaowen Shi1, Xiaoyan Deng1, Yumeng Tao2, Hongli Chen3、*, Jinghuai Fang3, and Chonggui Zhong3
Author Affiliations
  • 1School of Transportation Engineering, Jiangsu Shipping College, Nantong , Jiangsu 226010, China
  • 2School of Rail Transportation, Nanjing Vocational Institute of Transport Technology, Nanjing , Jiangsu 211188, China
  • 3School of Science, Nantong University, Nantong , Jiangsu 226019, China
  • show less
    DOI: 10.3788/LOP202158.1123002 Cite this Article Set citation alerts
    Yan Lu, Xiaowen Shi, Xiaoyan Deng, Yumeng Tao, Hongli Chen, Jinghuai Fang, Chonggui Zhong. Enhanced Raman Scattering Based on Thickness of Oscillating Metallic Optical Waveguide[J]. Laser & Optoelectronics Progress, 2021, 58(11): 1123002 Copy Citation Text show less
    References

    [1] Haynes C L, McFarland A D, van Duyne R P. Surface-enhanced Raman spectroscopy[J]. Analytical Chemistry, 77, 338A-346A(2005).

    [2] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 275, 1102-1106(1997).

    [3] Qian X M, Peng X H, Ansari D O et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags[J]. Nature Biotechnology, 26, 83-90(2008).

    [4] Dong X H, Tang S Z, Chen S Y et al. Examination of disease in synovial arthritis based on SERS spectroscopy[J]. Laser & Optoelectronics Progress, 58, 0117001(2021).

    [5] Duan X K, Yao Y, Li J W et al. Detection of acesulfame potassium in mouthwash based on surface-enhanced Raman spectroscopy[J]. Optical Engineering, 57, 057102(2018).

    [6] Hu X, Wu R M, Zhu X Y et al. Fast detection of chlorpyrifos residues in tea via surface-enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy[J]. Acta Optica Sinica, 39, 0730001(2019).

    [7] Yang Y A, Zhang D Q, Zhang C Y et al. Surface enhanced Raman spectroscopy analysis of glyphosate solution volatiles[J]. Laser & Optoelectronics Progress, 57, 133003(2020).

    [8] Joon L G, Kwon Y W, Hee K Y et al. Raman spectroscopic study of plasma-treated salmon DNA[J]. Applied Physics Letters, 102, 021911(2013).

    [9] Wang T Y, Wang Y Y, Lin X L et al. Ultrasensitive quantitative detection of alpha-fetoprotein based on SERS spectroscopy[J]. Chinese Journal of Lasers, 47, 0207026(2020).

    [10] McKee K J, Meyer M W, Smith E A. Near IR scanning angle total internal reflection Raman spectroscopy at smooth gold films[J]. Analytical Chemistry, 84, 4300-4306(2012).

    [11] Liu Y, Xu S P, Xuan X Y et al. Long-range surface plasmon field-enhanced Raman scattering spectroscopy based on evanescent field excitation[J]. The Journal of Physical Chemistry Letters, 2, 2218-2222(2011).

    [12] Gu Y J, Xu S P, Li H B et al. Waveguide-enhanced surface plasmons for ultrasensitive SERS detection[J]. The Journal of Physical Chemistry Letters, 4, 3153-3157(2013).

    [13] Li H G, Cao Z Q, Lu H F et al. Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide[J]. Applied Physics Letters, 83, 2757-2759(2003).

    [14] Xu T, Huang L M, Yin C et al. Enhanced Raman scattering assisted by ultrahigh order modes of the double metal cladding waveguide[J]. Applied Physics Letters, 105, 163703(2014).

    [15] Yin C, Lu Y, Xu T et al. Enhanced Raman scattering based on Fabry-Perot like resonance in a metal-cladding waveguide[J]. Journal of Raman Spectroscopy, 47, 560-564(2016).

    [16] Lu H F, Cao Z Q, Li H G et al. Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide[J]. Applied Physics Letters, 85, 4579-4581(2004).

    [17] Wei D, Xu T, Yuan L et al. Refractive index modulating Raman spectroscopy based on perovskite PMN-PT ceramics[J]. Applied Optics, 55, 2748-2751(2016).

    [18] Xu T, Lu Y, Li J F et al. Enhanced Raman spectroscopy by a double cavity metal-cladding waveguide[J]. Applied Optics, 56, 115-119(2016).

    [19] Jailaubekov A E, Willard A P, Tritsch J R et al. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics[J]. Nature Materials, 12, 66-73(2013).

    [20] Zeis R, Siegrist T, Kloc C. Single-crystal field-effect transistors based on copper phthalocyanine[J]. Applied Physics Letters, 86, 022103(2005).

    [21] Park J H, Royer J E, Chagarov E et al. Atomic imaging of the irreversible sensing mechanism of NO2 adsorption on copper phthalocyanine[J]. Journal of the American Chemical Society, 135, 14600-14609(2013).

    [22] Yuan W, Yin C, Li H G et al. Wideband slow light assisted by ultrahigh-order modes[J]. Journal of the Optical Society of America B, 28, 968-971(2011).

    [23] Zheng Y L, Cao Z Q, Chen X F. Conical reflection of light during free-space coupling into a symmetrical metal-cladding waveguide[J]. Journal of the Optical Society of America A, 30, 1901-1904(2013).

    Yan Lu, Xiaowen Shi, Xiaoyan Deng, Yumeng Tao, Hongli Chen, Jinghuai Fang, Chonggui Zhong. Enhanced Raman Scattering Based on Thickness of Oscillating Metallic Optical Waveguide[J]. Laser & Optoelectronics Progress, 2021, 58(11): 1123002
    Download Citation