• Photonics Research
  • Vol. 12, Issue 6, 1274 (2024)
Ting Zeng1,2,3,†, Qi Shen1,2,3,†, Yuan Cao1,2,3,*, Jian-Yu Guan1,2,3..., Meng-Zhe Lian1,2,3, Jin-Jian Han1,2,3, Lei Hou1,2,3, Jian Lu1,2,3, Xin-Xin Peng1,2,3, Min Li1,2,3, Wei-Yue Liu4, Jin-Cai Wu5, Yong Wang6, Juan Yin1,2,3, Ji-Gang Ren1,2,3, Hai-Feng Jiang1,2,3, Qiang Zhang1,2,3, Cheng-Zhi Peng1,2,3,7 and Jian-Wei Pan1,2,3,8|Show fewer author(s)
Author Affiliations
  • 1Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
  • 2Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
  • 3Hefei National Laboratory, University of Science and Technology of China, Hefei 230094, China
  • 4Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211, China
  • 5Key Laboratory of Space Active Opto-Electronic Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 6Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China
  • 7e-mail: pcz@ustc.edu.cn
  • 8e-mail: pan@ustc.edu.cn
  • show less
    DOI: 10.1364/PRJ.511141 Cite this Article Set citation alerts
    Ting Zeng, Qi Shen, Yuan Cao, Jian-Yu Guan, Meng-Zhe Lian, Jin-Jian Han, Lei Hou, Jian Lu, Xin-Xin Peng, Min Li, Wei-Yue Liu, Jin-Cai Wu, Yong Wang, Juan Yin, Ji-Gang Ren, Hai-Feng Jiang, Qiang Zhang, Cheng-Zhi Peng, Jian-Wei Pan, "Measurement of atmospheric non-reciprocity effects for satellite-based two-way time-frequency transfer," Photonics Res. 12, 1274 (2024) Copy Citation Text show less
    References

    [1] B. J. Bloom, T. L. Nicholson, J. R. Williams. An optical lattice clock with accuracy and stability at the 10−18 level. Nature, 506, 71-75(2014).

    [2] S. L. Campbell, R. B. Hutson, G. E. Marti. A Fermi-degenerate three-dimensional optical lattice clock. Science, 358, 90-94(2017).

    [3] A. D. Ludlow, M. M. Boyd, J. Ye. Optical atomic clocks. Rev. Mod. Phys., 87, 637-701(2015).

    [4] K. Kim, A. Aeppli, T. Bothwell. Evaluation of lattice light shift at low 10−19 uncertainty for a shallow lattice Sr optical clock. Phys. Rev. Lett., 130, 113203(2023).

    [5] C. Lisdat, G. Grosche, N. Quintin. A clock network for geodesy and fundamental science. Nat. Commun., 7, 12443(2016).

    [6] T. E. Mehlstäubler, G. Grosche, C. Lisdat. Atomic clocks for geodesy. Rep. Prog. Phys., 81, 064401(2018).

    [7] W. Lewandowski, E. F. Arias. GNSS times and UTC. Metrologia, 48, S219(2011).

    [8] T. Schuldt, M. Gohlke, M. Oswald. Optical clock technologies for global navigation satellite systems. GPS Solutions, 25, 83(2021).

    [9] F. Riehle. Towards a redefinition of the second based on optical atomic clocks. C.R. Phys., 16, 506-515(2015).

    [10] W. F. McGrew, X. Zhang, H. Leopardi. Towards the optical second: verifying optical clocks at the SI limit. Optica, 6, 448-454(2019).

    [11] F. Riehle, P. Gill, F. Arias. The CIPM list of recommended frequency standard values: guidelines and procedures. Metrologia, 55, 188-200(2018).

    [12] M. Safronova, D. Budker, D. DeMille. Search for new physics with atoms and molecules. Rev. Mod. Phys., 90, 025008(2018).

    [13] C. Chin, V. V. Flambaum, M. G. Kozlov. Ultracold molecules: new probes on the variation of fundamental constants. New J. Phys., 11, 055048(2009).

    [14] A. Derevianko, M. Pospelov. Hunting for topological dark matter with atomic clocks. Nat. Phys., 10, 933-936(2014).

    [15] S. Kolkowitz, I. Pikovski, N. Langellier. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D, 94, 124043(2016).

    [16] P. Delva, J. Lodewyck, S. Bilicki. Test of special relativity using a fiber network of optical clocks. Phys. Rev. Lett., 118, 221102(2017).

    [17] A. Bauch. Time and frequency comparisons using radiofrequency signals from satellites. C. R. Phys., 16, 471-479(2015).

    [18] A. Bauch, L. Breakiron, D. Matsakis. On the accuracy of two-way satellite time and frequency transfer: a study of triplet closures. Conference on Precision Electromagnetic Measurements Digest, 612-613(2008).

    [19] M. Fujieda, D. Piester, T. Gotoh. Carrier-phase two-way satellite frequency transfer over a very long baseline. Metrologia, 51, 253-262(2014).

    [20] E. Samain, P. Vrancken, P. Guillemot. Time transfer by laser link (T2L2): characterization and calibration of the flight instrument. Metrologia, 51, 503-515(2014).

    [21] Y. Guo, S. Gao, Y. Bai. A new space-to-ground microwave-based two-way time synchronization method for next-generation space atomic clocks. Remote Sens., 14, 528(2022).

    [22] I. Coddington, W. C. Swann, L. Nenadovic. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 3, 351-356(2009).

    [23] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

    [24] J. Mandon, G. Guelachvili, N. Picqué. Fourier transform spectroscopy with a laser frequency comb. Nat. Photonics, 3, 99-102(2009).

    [25] P. Trocha, M. Karpov, D. Ganin. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [26] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [27] F. R. Giorgetta, W. C. Swann, L. C. Sinclair. Optical two-way time and frequency transfer over free space. Nat. Photonics, 7, 434-438(2013).

    [28] J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta. Synchronization of distant optical clocks at the femtosecond level. Phys. Rev. X, 6, 021016(2016).

    [29] Q. Shen, J.-Y. Guan, T. Zeng. Experimental simulation of time and frequency transfer via an optical satellite–ground link at 10−18 instability. Optica, 8, 471-476(2021).

    [30] Boulder Atomic. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature, 591, 564-569(2021).

    [31] L. C. Sinclair, H. Bergeron, W. C. Swann. Comparing optical oscillators across the air to milliradians in phase and 10−17 in frequency. Phys. Rev. Lett., 120, 050801(2018).

    [32] Q. Shen, J.-Y. Guan, J.-G. Ren. Free-space dissemination of time and frequency with 10−19 instability over 113 km. Nature, 610, 661-666(2022).

    [33] E. D. Caldwell, J.-D. Deschenes, J. Ellis. Quantum-limited optical time transfer for future geosynchronous links. Nature, 618, 721-726(2023).

    [34] H. Bergeron, L. C. Sinclair, W. C. Swann. Femtosecond time synchronization of optical clocks off of a flying quadcopter. Nat. Commun., 10, 1819(2019).

    [35] C. Robert, J.-M. Conan, P. Wolf. Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links. Phys. Rev. A, 93, 033860(2016).

    [36] W. C. Swann, M. I. Bodine, I. Khader. Measurement of the impact of turbulence anisoplanatism on precision free-space optical time transfer. Phys. Rev. A, 99, 023855(2019).

    [37] A. Belmonte, M. T. Taylor, L. Hollberg. Effect of atmospheric anisoplanatism on earth-to-satellite time transfer over laser communication links. Opt. Express, 25, 15676-15686(2017).

    [38] M. Armano, H. Audley, G. Auger. Sub-femto- free fall for space-based gravitational wave observatories: Lisa pathfinder results. Phys. Rev. Lett., 116, 231101(2016).

    [39] L. C. Andrews, R. L. Phillips. Laser Beam Propagation through Random Media(2005).

    Ting Zeng, Qi Shen, Yuan Cao, Jian-Yu Guan, Meng-Zhe Lian, Jin-Jian Han, Lei Hou, Jian Lu, Xin-Xin Peng, Min Li, Wei-Yue Liu, Jin-Cai Wu, Yong Wang, Juan Yin, Ji-Gang Ren, Hai-Feng Jiang, Qiang Zhang, Cheng-Zhi Peng, Jian-Wei Pan, "Measurement of atmospheric non-reciprocity effects for satellite-based two-way time-frequency transfer," Photonics Res. 12, 1274 (2024)
    Download Citation