• Journal of Inorganic Materials
  • Vol. 35, Issue 1, 112 (2020)
Tian-Yu ZHANG1, Cong CUI1、2, Ren-Fei CHENG1、2, Min-Min HU1、2, and Xiao-Hui WANG1、*
Author Affiliations
  • 1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
  • 2School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.15541/jim20190298 Cite this Article
    Tian-Yu ZHANG, Cong CUI, Ren-Fei CHENG, Min-Min HU, Xiao-Hui WANG. Fabrication of Planar Porous MXene/Carbon Composite Electrodes by Simultaneous Ammonization/Carbonization[J]. Journal of Inorganic Materials, 2020, 35(1): 112 Copy Citation Text show less
    References

    [1] P MIRÓ, M AUDIFFRED, T HEINE. An atlas of two-dimensional materials. Chemical Society Reviews, 43, 6537-6554(2014).

    [2] M XU, T LIANG, M SHI et al. Graphene-like two-dimensional materials. Chemical Reviews, 113, 3766-3798(2013).

    [3] S CAHANGIROV, M TOPSAKAL, E AKTURK et al. Two- and one-dimensional honeycomb structures of silicon and germanium. Physical Review Letters, 102, 236804(2009).

    [4] B LALMI, H OUGHADDOU, H ENRIQUEZ et al. Epitaxial growth of a silicene sheet. Applied Physics Letters, 97, 223109(2010).

    [5] H LIU, T NEAL A, Z ZHU et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033-4041(2014).

    [6] C ATACA, H SAHIN, S CIRACI. Stable, single-layer MX2 transition- metal oxides and dichalcogenides in a honeycomb-like structure. Journal of Physical Chemistry C, 116, 8983-8999(2012).

    [7] C ZHOU Y, M XIANG H, H WANG X et al. Electronic structure and mechanical properties of layered compound YB2C2: a promising precursor for making two dimensional (2D) B2C2 nets. Journal of Materials Science & Technology, 33, 1044-1054(2017).

    [8] V NICOLOSI, M CHHOWALLA, G KANATZIDIS M et al. Liquid exfoliation of layered materials. Science, 340, 1226419(2013).

    [9] M NAGUIB, M KURTOGLU, V PRESSER et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248-4253(2011).

    [10] N MICHAEL, M OLHA, C JOSHUA et al. Two-dimensional transition metal carbides. ACS Nano, 6, 1322-1331(2012).

    [11] X ZHANG, J XU, H WANG et al. Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al0.25C2. .Angewandte Chemie-International Edition, 52, 4361-4365(2013).

    [12] O MASHTALIR, M NAGUIB, B DYATKIN et al. Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. .Materials Chemistry and Physics, 139, 147-152(2013).

    [13] M GHIDIU, M NAGUIB, C SHI et al. Synthesis and characterization of two-dimensional Nb4C3(MXene). Chemical Communications, 50, 9517-9520(2014).

    [14] J ZHOU, H ZHA X, Y CHEN F et al. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angewandte Chemie-International Edition, 55, 5008-5013(2016).

    [15] B ANASORI, MR LUKATSKAYA, Y GOGOTSI. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098(2017).

    [16] M KHAZAEI, A RANJBAR, M ARAI et al. Electronic properties and applications of MXenes: a theoretical review. .Journal of Materials Chemistry C, 5, 2488-2503(2017).

    [17] J ZHU, E HA, G ZHAO et al. Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. .Coordination Chemistry Reviews, 352, 306-327(2017).

    [18] K HANTANASIRISAKUL, Y GOGOTSI. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Advanced Materials, 30, 1804779(2018).

    [19] X LI, C WANG, Y CAO et al. Functional MXenes materials: progress of their applications. .Chemistry-An Asian Journal, 13, 2742-2757(2018).

    [20] H LIN, Y CHEN, J SHI. Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Advanced Science, 5, 1800518(2018).

    [21] H WANG, Y WU, X YUAN et al. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges. .Advanced Materials, 30, 1704561(2018).

    [22] Y DIAO J, M HU M, Z LIAN et al. Ti3C2Tx MXene catalyzed ethylbenzene dehydrogenation: active sites and mechanism exploration from both experimental and theoretical aspects. ACS Catalysis, 8, 10051-10057(2018).

    [23] Y YOON, K LEE, H LEE. Low-dimensional carbon and MXene- based electrochemical capacitor electrodes. Nanotechnology, 27, 172001(2016).

    [24] X ZHANG, Z ZHANG, Z ZHOU. MXene-based materials for electrochemical energy storage. Journal of Energy Chemistry, 27, 73-85(2018).

    [25] J PANG, G MENDES R, A BACHMATIUK et al. Applications of 2D MXenes in energy conversion and storage systems. .Chemical Society Reviews, 48, 72-133(2019).

    [26] Q YANG, Y WANG, X LI et al. Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices. .Energy & Environmental Materials, 1, 183-195(2018).

    [27] H WANG X, C ZHOU Y. Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic. Journal of Materials Chemistry, 12, 455-460(2002).

    [28] F CHENG R, T HU, H ZHANG et al. Understanding the lithium storage mechanism of Ti3C2Tx MXene. Journal of Physical Chemistry C, 123, 1099-1109(2019).

    [29] M HU M, C CUI, C SHI et al. High-energy-density hydrogen-ion- rocking-chair hybrid supercapacitors based on Ti3C2Tx MXene and carbon nanotubes mediated by redox active molecule. ACS Nano, 13, 6899-6905(2019).

    [30] M HU M, J LI Z, H ZHANG et al. Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance. Chemical Communications, 51, 13531-13533(2015).

    [31] M HU M, J LI Z, X LI G et al. All-solid-state flexible fiber-based MXene supercapacitors. Advanced Materials Technology, 2, 1700143(2017).

    [32] M HU M, T HU, F CHENG R et al. MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application. Journal of Energy Chemistry, 27, 161-166(2018).

    [33] M HU M, J LI Z, T HU et al. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano, 10, 11344-11350(2016).

    [34] M HU M, T HU, J LI Z et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano, 12, 3578-3586(2018).

    [35] W ZHU Y, S MURALI, D STOLLER M et al. Carbon-based supercapacitors produced by activation of graphene. Science, 332, 1537-1541(2011).

    [36] T HU, J LI Z, M HU M et al. Chemical origin of termination- functionalized MXenes: Ti3C2T2 as a case study. Journal of Physical Chemistry C, 121, 19254-19261(2017).

    [37] J YAN, E REN C, K MALESKI et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Advanced Functional Materials, 27, 1701264(2017).

    [38] R LUKATSKAYA M, M BAK S, Q YU X et al. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Advanced Energy Materials, 5, 1500589(2015).

    [39] B HU L, M PASTA, F LA MANTIA et al. Stretchable, porous, and conductive energy textiles. Nano Letters, 10, 708-714(2010).

    [40] M PASTA, F LA MANTIA, B HU L et al. Aqueous supercapacitors on conductive cotton. Nano Research, 3, 452-458(2010).

    [41] S WANG Y, M LI S, T HSIAO S et al. Integration of tailored reduced graphene oxide nanosheets and electrospun polyamide-66 nanofabrics for a flexible supercapacitor with high-volume- and high-area-specific capacitance. Carbon, 73, 87-98(2014).

    [42] L ZHOU Q, K YE X, Q WAN Z et al. A three-dimensionalflexible supercapacitor with enhancedperformance based on lightweight, conductive graphene-cotton fabricelectrode. Journal of Power Sources, 296, 186-196(2015).

    [43] E YOO J, J BAE. High-performance fabric-based supercapacitors using water-dispersible polyaniline-poly(2-acrylamido-2-methyl- 1-propanesulfonic acid). Macromolecular Research, 23, 749-754(2015).

    [44] K JOST, R PEREZ C, K MCDONOUGH J et al. Carbon coated textiles for flexible energy storage. Energy & Environmental Science, 4, 5060-5067(2011).

    [45] N KURRA, B AHMED, Y GOGOTSI et al. MXene-on-paper coplanar microsupercapacitors. .Advanced Energy Materials, 6, 1600969(2016).

    [46] E FRACKOWIAK, S DELPEUX, K JUREWICZ et al. Enhanced capacitance of carbon nanotubes through chemical activation. Chemical Physics Letters, 361, 35-41(2002).

    [47] X DU, W ZHAO, Y WANG et al. Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications. Bioresource Technology, 149, 31-37(2013).

    [48] Y WANG, Z SHI, Y HUANG et al. Supercapacitor devices based on graphene materials. The Journal of Physical Chemistry C, 113, 13103-13107(2009).

    [49] P WANG, J ZHAO Y, X WEN L et al. Ultrasound-microwave- assisted synthesis of MnO2 supercapacitor electrode materials. Industrial & Engineering Chemistry Research, 53, 20116-20123(2014).

    [50] P ZHENG J, J CYGAN P, R JOW T. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. Journal of the Electrochemical Society, 142, 2699-2703(1995).

    [51] A SNOOK G, P KAO, S BEST A. Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources, 196, 1-12(2011).

    Tian-Yu ZHANG, Cong CUI, Ren-Fei CHENG, Min-Min HU, Xiao-Hui WANG. Fabrication of Planar Porous MXene/Carbon Composite Electrodes by Simultaneous Ammonization/Carbonization[J]. Journal of Inorganic Materials, 2020, 35(1): 112
    Download Citation