• Laser & Optoelectronics Progress
  • Vol. 57, Issue 9, 090002 (2020)
Wei Li, Jiawen Yu, and Aimin Yan*
Author Affiliations
  • College of Mathematics and Science, Shanghai Normal University, Shanghai 200234, China
  • show less
    DOI: 10.3788/LOP57.090002 Cite this Article Set citation alerts
    Wei Li, Jiawen Yu, Aimin Yan. Research Progress of Vortex Beam Array Generation Technology[J]. Laser & Optoelectronics Progress, 2020, 57(9): 090002 Copy Citation Text show less
    Simulated phase distribution of interference field[26]
    Fig. 1. Simulated phase distribution of interference field[26]
    Experimental diagram and interference fringe pattern of Michelson interferometer[26]. (a) Diagram of Michelson interferometer; (b) fork fringe pattern
    Fig. 2. Experimental diagram and interference fringe pattern of Michelson interferometer[26]. (a) Diagram of Michelson interferometer; (b) fork fringe pattern
    Experimental diagram and interference fringe pattern of Mach-Zehnder interferometer[26]. (a) Diagram of Mach-Zehnder interferometer; (b) fork fringe pattern
    Fig. 3. Experimental diagram and interference fringe pattern of Mach-Zehnder interferometer[26]. (a) Diagram of Mach-Zehnder interferometer; (b) fork fringe pattern
    Fork fringe pattern[27]
    Fig. 4. Fork fringe pattern[27]
    Schematic of experimental setup using TN-LCSLM[34]
    Fig. 5. Schematic of experimental setup using TN-LCSLM[34]
    Optical vortex array illuminator, vortex beam array intensity, and interference fringe diagram[34]. (a) Hexagonal optical vortex array illuminator; (b) light intensity of vortex beam array; (c) fork fringe pattern
    Fig. 6. Optical vortex array illuminator, vortex beam array intensity, and interference fringe diagram[34]. (a) Hexagonal optical vortex array illuminator; (b) light intensity of vortex beam array; (c) fork fringe pattern
    Diffraction grating[35]. (a) Grating A; (b) grating B
    Fig. 7. Diffraction grating[35]. (a) Grating A; (b) grating B
    Intensity, phase, and interference fringe diagrams of vortex beam array[35]. (a) Point array of beam intensity; (b) phase distribution; (c) fork fringe pattern
    Fig. 8. Intensity, phase, and interference fringe diagrams of vortex beam array[35]. (a) Point array of beam intensity; (b) phase distribution; (c) fork fringe pattern
    Schematic diagram of optical wedge diffraction method[36]
    Fig. 9. Schematic diagram of optical wedge diffraction method[36]
    Simulation results of two columns of optical vortexes with opposite topological charge generated by single wedge[36]
    Fig. 10. Simulation results of two columns of optical vortexes with opposite topological charge generated by single wedge[36]
    Transformation relation diagram and transformation scheme diagram of mode converter[37]. (a) Transformation relation between flower-like LG mode and crisscrossed HG mode; (b) transformation scheme between flower-like LG mode and crisscrossed HG mode
    Fig. 11. Transformation relation diagram and transformation scheme diagram of mode converter[37]. (a) Transformation relation between flower-like LG mode and crisscrossed HG mode; (b) transformation scheme between flower-like LG mode and crisscrossed HG mode
    Intensity and phase diagrams of vortex beam array[37]. (a) Vortex beam array intensity distribution; (b) vortex beam array phase distribution
    Fig. 12. Intensity and phase diagrams of vortex beam array[37]. (a) Vortex beam array intensity distribution; (b) vortex beam array phase distribution
    Experimental result[38]
    Fig. 13. Experimental result[38]
    Schematic of experimental optical path[38]
    Fig. 14. Schematic of experimental optical path[38]
    Experimental diagram for OAM array encoding/decoding and distribution of beam arrays[39]. (a) Schematic of experimental optical path; (b) Gaussian beam arrays; (c) vortex beam arrays; (d) topological charge of vortex beam arrays
    Fig. 15. Experimental diagram for OAM array encoding/decoding and distribution of beam arrays[39]. (a) Schematic of experimental optical path; (b) Gaussian beam arrays; (c) vortex beam arrays; (d) topological charge of vortex beam arrays
    Rectangular vortex beam array with M rows and N columns[40]
    Fig. 16. Rectangular vortex beam array with M rows and N columns[40]
    Hologram and experimental interference fringes of vortex beam array[40]. (a) Hologram of vortex beam array; (b) interference fringes of vortex beam array
    Fig. 17. Hologram and experimental interference fringes of vortex beam array[40]. (a) Hologram of vortex beam array; (b) interference fringes of vortex beam array
    Schematic of experimental system[42]
    Fig. 18. Schematic of experimental system[42]
    Schematic of multi-channel vortex beam generator using metasurface[51]
    Fig. 19. Schematic of multi-channel vortex beam generator using metasurface[51]
    Vortex beam arrays obtained by experiment and simulation[51]
    Fig. 20. Vortex beam arrays obtained by experiment and simulation[51]
    MethodAdvantageDisadvantage
    InterferometrySimple experimental device, high contrast of vortex beam arrayExperimental complexity, system instability
    Talbot effect methodHigh compression ratio of vortex arrays, easy operationGrating position has a great influence on quality of beam array
    Optical wedge diffraction method for beam arrayAdjustable vortex beam array spacingComplication of wedge making process, multistage diffraction at edge of wedge, double edge diffraction caused by wedge tilt
    Mode conversion methodHigh conversion efficiencyComplication of optical structure, difficulty in device preparing, difficulty to control types and parameters of vortex beam array
    Dammann vortex grating methodThree-dimensional vortex array with adjustable topological charge, high purity of vortex arraysHigher requirement for surface quality of grating, expensive, difficult to process
    Computational holography methodEasy operation, variable parameters of the vortex arrayHigh requirement for computer speed and storage
    Spatial light modulation methodEasy operation, variable beam shape in a vortex arrayRequirement for space light modulator with high quality and high price
    Metamaterial pattern methodMiniaturization, high quality vortex arrayHigh price
    Table 1. Comparison of various methods
    Wei Li, Jiawen Yu, Aimin Yan. Research Progress of Vortex Beam Array Generation Technology[J]. Laser & Optoelectronics Progress, 2020, 57(9): 090002
    Download Citation