• Laser & Optoelectronics Progress
  • Vol. 55, Issue 4, 041601 (2018)
Yujin Chu, Jinmin Zhang*, Tinghong Gao, Zean Tian, Yongchao Liang, Qian Chen, Zhongnian Huang, and Quan Xie
Author Affiliations
  • College of Big Data and Information Engineering, Guizhou University, Guiyang, Guizhou 550025, China
  • show less
    DOI: 10.3788/LOP55.041601 Cite this Article Set citation alerts
    Yujin Chu, Jinmin Zhang, Tinghong Gao, Zean Tian, Yongchao Liang, Qian Chen, Zhongnian Huang, Quan Xie. Theoretical Calculation of Electronic Structure and Optical Properties of Two-Dimensional GaAs[J]. Laser & Optoelectronics Progress, 2018, 55(4): 041601 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004). http://www.europepmc.org/abstract/MED/15499015

    [2] Liu M, Yin X, Ulin-Avila E et al. A graphene-based broadband optical modulator[J]. Nature, 474, 64-67(2011). http://www.ncbi.nlm.nih.gov/pubmed/21552277

    [3] Dutta S, Pati S K. Half-metallicity in undoped and boron doped graphene nanoribbons in the presence of semilocal exchange-correlation interactions[J]. The Journal of Physical Chemistry, 112, 1333-1335(2008). http://europepmc.org/abstract/MED/18189386

    [4] Song C L, Sun B, Wang Y L et al. Charge-transfer-induced cesium superlattices on graphene[J]. Physical Review Letters, 108, 156803(2012). http://europepmc.org/abstract/MED/22587275

    [5] Zhang S, Yan Z, Li Y et al. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions[J]. Angewandte Chemie, 127, 3155-3158(2015). http://europepmc.org/abstract/med/25564773

    [6] Zhang S, Zhou W, Ma Y et al. Antimonene oxides: Emerging tunable direct bandgap semiconductor and novel topological insulator[J]. Nano Letters, 17, 3434-3440(2017). http://www.ncbi.nlm.nih.gov/pubmed/28460176

    [7] Zhang S, Xie M, Li F et al. Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities[J]. Angewandte Chemie International Edition, 55, 1666-1669(2016). http://onlinelibrary.wiley.com/doi/10.1002/anie.201507568/pdf

    [8] Li H F, Liang T, Xie S et al. Fluorescence property of two-dimensional materials/PTCDA heterojunctions[J]. Chinese Journal of Lasers, 44, 0703011(2017).

    [9] Wei C, Shi H X, Luo H Y et al. Research progress of pulsed mid-infrared fiber laser using two-dimensional materials[J]. Chinese Journal of Lasers, 44, 0703009(2017).

    [10] Zheng T, Nan H Y, Wu Z T et al. Laser emission on two-dimensional transition metal dichalcogenides[J]. Laser & Optoelectronics Progress, 54, 040003(2017).

    [11] Guo B, Yao Y, Yang Y F et al. Dual-wavelength rectangular pulse erbium-doped fiber laser based on topological insulator saturable absorber[J]. Photonics Research, 3, 94-99(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ160106000197OkRnUq

    [12] Li Y. Electrical and optoelectronic properties of MoS2, WSe2 and related heterostructures[D]. Harbin: Harbin Institute of Technology(2016).

    [13] Guo B, Lü Q, Yao Y et al. Direct generation of dip-type sidebands from WS2 mode-locked fiber laser[J]. Optical Materials Express, 6, 2475-2486(2016). http://www.opticsinfobase.org/ome/abstract.cfm?uri=ome-6-8-2475

    [14] Zhang Q M, Chiarotti G, Selloni A et al. Atomic structure and bonding in liquid GaAs from Iab-initioP molecular dynamics[J]. Physical Review B, 42, 5071-5081(1990). http://europepmc.org/abstract/MED/9996067

    [15] Schick J T, Morgan C G, Papoulias P. First-principles study of As interstitials in GaAs: Convergence, relaxation, and formation energy[J]. Physical Review B, 66, 195302(2002). http://arxiv.org/abs/1101.1413

    [16] Zhang D L, Xu Y L, Zhang J B et al. First-principles study of the electronic transport properties in (GaAs)n (n=2-4) nanocluster-based molecular junctions[J]. Physics Letters A, 376, 3272-3276(2012).

    [17] Kratzer P, Penev E, Scheffler M. First-principles studies of kinetics in epitaxial growth of III-V semiconductors[J]. Applied Physics A: Materials Science & Processing, 75, 79-88(2002). http://link.springer.com/article/10.1007/s003390101057

    [18] Rino J P, Chatterjee A, Ebbsjö I et al. Pressure-induced structural transformation in GaAs: A molecular-dynamics study[J]. Physical Review B, 65, 195206(2002). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.65.195206

    [19] Clark S J, Segall M D, Pickard C J et al. First principles methods using CASTEP[J]. Zeitschrift für Kristallographie-Crystalline Materials, 220, 567-570(2005). http://www.nrcresearchpress.com/servlet/linkout?suffix=refg38/ref38&dbid=16&doi=10.1139%2Fv11-049&key=10.1524%2Fzkri.220.5.567.65075

    [20] Broyden C G. The convergence of a class of double-rank minimization algorithms 1. General considerations[J]. IMA Journal of Applied Mathematics, 6, 76-90(1970). http://www.oxfordjournals.org/page/6358/10

    [21] Fletcher R. A new approach to variable metric algorithms[J]. The Computer Journal, 13, 317-322(1970). http://www.oxfordjournals.org/page/6597/5

    [22] Goldfarb D. A family of variable-metric methods derived by variational means[J]. Mathematics of Computation, 24, 23-26(1970). http://biomet.oxfordjournals.org/external-ref?access_num=10.1090/S0025-5718-1970-0258249-6&link_type=DOI

    [23] Shanno D F. Conditioning of quasi-Newton methods for function minimization[J]. Mathematics of Computation, 24, 647-656(1970). http://www.ams.org/mcom/1970-24-111/S0025-5718-1970-0274029-X

    [24] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 77, 3865-3868(1996). http://www.nrcresearchpress.com/servlet/linkout?suffix=refg28/ref28&dbid=16&doi=10.1139%2Fv11-044&key=10.1103%2FPhysRevLett.77.3865

    [25] Tersoff J. Empirical interatomic potential for silicon with improved elastic properties[J]. Physical Review B, 38, 9902-9905(1988). http://www.ncbi.nlm.nih.gov/pubmed/9945814

    [26] Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems[J]. Physical Review B, 39, 5566-5568(1989). http://prola.aps.org/abstract/PRB/v39/i8/p5566_1

    [27] Fang R C[M]. Solid spectroscopy, 71-75(2001).

    [28] Shen X C[M]. Semiconductor spectroscopy and optical properties, 76-94(2002).

    [29] Su L, Wang X D, Yao M. The first principles study on electronic and optical properties of Sb-doped zinc blende GaAs[J]. Material Review, 26, 142-147(2012).

    [30] Chen Q S. The first principles study of GaAs's optical properties and electricity properties Xi'an:[D]. Xidian University(2010).

    [31] Huang R Q. A first-principles study of the electronic, optical and magnetic properties of N substitution in GaAs[D]. Zhengzhou: Zhengzhou University(2015).

    [32] Yan Y, Wang Q, Shu W et al. First-principle study of the electronic and optical properties of BInGaAs quaternary alloy lattice-matched to GaAs[J]. Physica B: Condensed Matter, 407, 4570-4573(2012). http://www.sciencedirect.com/science/article/pii/S0921452612008046

    [33] Seeger K. Semiconductor physics[M]. New York: Springer Science & Business Media(2013).

    [34] Chen D, Xiao H Y, Jia W et al. Electronic structures and optical properties of AAl2C4 (A=Zn, Cd, Hg; C=S, Se) semiconductors[J]. Acta Physica Sinica, 61, 127103(2012).

    [35] Saniz R, Ye L H, Shishidou T et al. Structural, electronic, and optical properties of NiAl3: First-principles calculations[J]. Physical Review B, 74, 014209(2006). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000074000001014209000001&idtype=cvips&gifs=Yes

    Yujin Chu, Jinmin Zhang, Tinghong Gao, Zean Tian, Yongchao Liang, Qian Chen, Zhongnian Huang, Quan Xie. Theoretical Calculation of Electronic Structure and Optical Properties of Two-Dimensional GaAs[J]. Laser & Optoelectronics Progress, 2018, 55(4): 041601
    Download Citation