• Chinese Journal of Lasers
  • Vol. 38, Issue 1, 106003 (2011)
Zhang Guang1、2、*, Zhou Qinling1, Hu Lili1, and Chen Danping1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/cjl201138.0106003 Cite this Article Set citation alerts
    Zhang Guang, Zhou Qinling, Hu Lili, Chen Danping. A Large Core Phosphate Photonic Crystal Fiber Made by a Stack-and-Draw Technique[J]. Chinese Journal of Lasers, 2011, 38(1): 106003 Copy Citation Text show less
    References

    [1] T. A. Birks, J. C. Knight, P. Russell. Endlessly single-mode photonic crystal fiber[J]. Opt. Lett., 1997, 22(13): 961~963

    [2] J. C. Knight, J. Arriaga, T. A. Birks et al.. Anomalous dispersion in photonic crystal fiber[J]. IEEE Photon. Technol. Lett., 2000, 12(7): 807~809

    [3] J. K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Opt. Lett., 2000, 25(1): 25~27

    [4] J. Limpert, T. Schreiber, S. Nolte et al.. High-power air-clad large-mode-area photonic crystal fiber laser[J]. Opt. Express, 2003, 11(7): 818~823

    [5] J. Limpert, T. Schreiber, A. Tunnermann. Fiber based high power laser systems. http://www.iap.uni-jena.de/laser/_media/laser_systems.pdf

    [6] Hou Yu, Zhou Guiyao, Hou Lantian et al.. Analysis of dispersion properties of octagonal structural photonic crystal fiber with double cladding[J]. Chinese J. Lasers, 2010, 37(4): 1068~1072

    [7] Zhao Yu, Jin Yongxing, Dong Xinyong et al.. Expermental studies of multimode interference based fiber optic refractive index sensors[J]. Chinese J. Lasers, 2010, 37(6): 1516~1519

    [8] Wang Yanbin, Hou Jing, Liang Dongming et al.. Study of supercontinuum generation in the normal-dispersion regime of photonic crystal fibers[J]. Chinese J. Lasers, 2010, 37(4): 1073~1077

    [9] Zhang Yuying, Zhang Chi, Hu Minglie et al.. Free-output-coupler high-power all-normal-dispersion femtosecond photonic crystal fiber laser[J]. Chinese J. Lasers, 2010, 37(1): 64~67

    [10] Ke Tao, Zhu Tao, Rao Yunjiang et al.. Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber[J]. Chinese J. Lasers, 2010, 37(1): 171~175

    [11] G. Barton, M. A. Eijkelenborg, G. Henry et al.. Fabrication of microstructured polymer optical fibers[J]. Opt. Fiber Technol., 2004, 10(4): 325~335

    [12] X. Feng, W. H. Loh, J. C. Flanagan et al.. Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear application[J]. Opt. Express, 2008, 16(18): 13651~13656

    [13] L. Brilland, F. Smektala, G. Renversez et al.. Fabrication of complex structures of holey fibers in chalcogenide glass[J]. Opt. Express, 2006, 14(3): 1280~1285

    [14] Y. Lee, M. Digonnet, S. Sinha et al.. High-power Yb3+-doped phosphate fiber amplifier[J]. IEEE J. Sel. Top. Quantum Electron., 2009, 15(1): 93~102

    [15] Y. L. Tang, Y. Yang, J. Q. Xu. Side-pumped short rectangular Nd-doped phosphate glass fiber lasers[J]. Chin. Opt. Lett., 2008, 6(8): 583~585

    CLP Journals

    [1] Zhou Dechun, Bai Xuemei, Zhou Hang. Preparation of the Large-Mode-Area Ytterbium-Doped Microstructure Fibre and Laser Performance[J]. Chinese Journal of Lasers, 2014, 41(12): 1205006

    [2] Shang Liang, Zhang Lichun, Qi Limei. Design of Hollow-Core Bragg Fiber with Broadband Transmission for Trace-Gas Detection[J]. Chinese Journal of Lasers, 2013, 40(2): 205004

    Zhang Guang, Zhou Qinling, Hu Lili, Chen Danping. A Large Core Phosphate Photonic Crystal Fiber Made by a Stack-and-Draw Technique[J]. Chinese Journal of Lasers, 2011, 38(1): 106003
    Download Citation