• Microelectronics
  • Vol. 53, Issue 3, 472 (2023)
RHONG Min, CHEN Xian, XU Xueliang, TANG Xinyue, ZHANG Zhengyuan, and ZHANG Peijian
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.220457 Cite this Article
    RHONG Min, CHEN Xian, XU Xueliang, TANG Xinyue, ZHANG Zhengyuan, ZHANG Peijian. esearch Progress on Mechanical and Electrical Properties of Silicon-Based Ultrathin Flexible Chips[J]. Microelectronics, 2023, 53(3): 472 Copy Citation Text show less
    References

    [1] DUBEY P K, YOGESWARAN N, LI F Y, et al. Monolayer MoSe-based tunneling field effect transistor for ultrasensitive strain sensing [J]. IEEE T Electron Dev, 2020, 67(5): 2140-2146.

    [2] GUPTA S, NAVARAJ W T, LORENZELLI L, et al. Ultra-thin chips for high-performance flexible electronics [J]. NPJ Flexible Electronics, 2018, 2(1): 1-17.

    [3] HUSSAIN A M, HUSSAIN M M. CMOS-technology-enabled flexible and stretchable electronics for internet of everything applications [J]. Adv Mater, 2016, 28(22): 4219-4249.

    [4] GUPTA S, VILOURAS A, HEIDARI H, et al. Device modelling of silicon based high-performance flexible electronics [C] // IEEE ISIE. Edinburgh, UK. 2017: 2089-2092.

    [5] KRONINGER W, MARIANI F. Thinning and singulation of silicon: root causes of the damage in thin chips [C] // 56th ECTC. San Diego, CA, USA. 2006: 1317-1322.

    [6] SHETTY S, REINIKAINEN T. Three- and four-point bend testing for electronic packages [J]. J Electron Packag, 2003, 125(4): 556-561.

    [7] HEIDARI H, WACKER N, DAHIYA R. Bending induced electrical response variations in ultra-thin flexible chips and device modeling [J]. Appl Phys Rev, 2017, 4(3): 031101-031120.

    [8] ENDLER S, HOANG T, ANGELOPOULOS E A, et al. Mechanical characterisation of ultra-thin chips [C] // Semiconductor Conference Dresden. Dresden, Germany. 2011:1-4.

    [9] VAN DEN ENDE D A, VAN DE WIEL H J, Kusters R H L, et al. Mechanical and electrical properties of ultra-thin chips and flexible electronics assemblies during bending [J]. Microelectron Reliab, 2014, 54(12): 2860-2870.

    [10] LUND E, FINSTAD T G. Design and construction of a four-point bending based set-up for measurement of piezoresistance in semiconductors [J]. Rev Sci Instru, 2004, 75(11): 4960-4966.

    [11] WACKER N, RICHTER H, HASSAN M, et al. Compact modeling of CMOS transistors under variable uniaxial stress [J]. Solid State Electron, 2011, 57(1): 52-60.

    [12] NELSON G J, MATTHEWSON M J, LIN B. A novel four-point bend test for strength measurement of optical fibers and thin beams. I. Bending analysis [J]. J Lightwave Technol, 1996, 14(4): 555-563.

    [13] VAN DEN ENDE D, VAN DEN BRAND J. High curvature bending of ultra-thin chips and chip-on-foil assemblies [C] // Proc COMSOL Conference, Rotterdam, Netherlands. 2013: 18-20.

    [14] WACKER N, RICHTER H, HOANG T, et al. Stress analysis of ultra-thin silicon chip-on-foil electronic assembly under bending [J]. Semicond Sci Technol, 2014, 29(9): 095007.

    [15] NAVARAJ W T, GUPTA S, LORENZELLI L, et al. Wafer scale transfer of ultrathin silicon chips on flexible substrates for high performance bendable systems [J]. Adv Electron Mater, 2018, 4(4): 1700277-1700290.

    [16] LIM H, KONG S, GUICHARD E, et al. A general approach for deformation induced stress on flexible electronics [C] // Int conf SISPAD. Austin, TX, USA. 2018: 276-279.

    [17] ZHU H, FANG Z X, XIE N, et al. Effect of biaxial bending strains on the electrical characteristics of flexible low-temperature polysilicon thin-film transistors [J]. IEEE T Electron Dev, 2022, 69(9): 4924-4929.

    [18] CHRISTOU A, DAHIYA A S, DAHIYA R. Finite element analysis of stress distribution in soft sensors under torsional loading [C] // Int conf FLEPS. Vienna, Austria. 2022: 1-4.

    [19] RIDLEY B A, NIVI B, JACOBSON J M. All-inorganic field effect transistors fabricated by printing [J]. Science, 1999, 286(5440): 746-749.

    [20] WONG W S, READY S, MATUSIAK R, et al. Amorphous silicon thin-film transistors and arrays fabricated by jet printing [J]. Appl Phys Lett, 2002, 80(4): 610-612.

    [21] PALAVESAM N, LANDESBERGER C, BOCK K. Investigations of the fracture strength of thin silicon dies embedded in flexible foil substrates [C] // The 2014 IEEE 20th SIITME. Bucharest, Romania. 2014: 267-271.

    [22] PALAVESAM N, LANDESBERGER C, KUTTER C, et al. Finite element analysis of uniaxial bending of ultra-thin silicon dies embedded in flexible foil substrates [C] // The 2015 11th PRIME. Glasgow, UK. 2015: 137-140.

    [23] KIM J H, LEE T I, SHIN J W, et al. Bending properties of anisotropic conductive films assembled chip-in-flex packages for wearable electronics applications [J]. IEEE T Comp Pack Man, 2016, 6(2): 208-215.

    [24] KIM D H, AHN J H, CHOI W M, et al. Stretchable and foldable silicon integrated circuits [J]. Science, 2008, 320(5875): 507-511.

    [25] HWANG S W, LEE C H, CHENG H Y, et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors [J]. Nano lett, 2015, 15(5): 2801-2808.

    [26] BURGHARTZ J. Ultra-thin chip technology and applications [M]. New York: Springer Science & Business Media, 2011: 233-243.

    [27] SMITH C S. Piezoresistance effect in germanium and silicon [J]. Phys Rev, 1954. 94(1): 42-49.

    [28] MATSUDA K. Nonlinear piezoresistance effects in silicon [J]. J Appl Phys, 1993. 73(4): 1838-1847.

    [29] COLMAN D, BATE R, MIZE J P. Mobility anisotropy and piezoresistance in silicon p-type inversion layers [J]. J Appl Phys, 1968, 39(4): 1923-1931.

    [30] BRADLEY A T, JAEGER R C, SUHLING J C, et al. Piezoresistive characteristics of short-channel MOSFETs on (100) silicon [J]. IEEE T Electron Dev, 2001, 48(9): 2009-2015.

    [31] MAHSERECI Y U, WACKER N, RICHTER H, et al. An ultra-thin CMOS in-plane stress sensor [C] // 9th Conference on PRIME. Villach, Austria. 2013: 317-320.

    [32] HFNER J, MOKWA W, DOGIAMIS G, et al. CMOS transistors under uniaxial stress on ultra-thin chips for applications in bendable image sensors [C] // 9th Conference on PRIME. Aachen, Germany. 2012: 271-274.

    [33] CANALI C, FERLA F, MORTEN B, et al. Piezoresistivity effects in MOS-FET useful for pressure transducers [J]. J Phys D Appl Phys, 1979, 12(11): 1973-1983.

    [34] GALLON C, REIMBOLD G, GHIBAUDO G, et al. Electrical analysis of mechanical stress induced by STI in short MOSFETs using externally applied stress [J]. IEEE T Electron Dev, 2004, 51(8): 1254-1261.

    [35] KINO H, BEA J C, MURUGESAN M, et al. Investigation of local bending stress effect on complementary metal-oxide-semiconductor characteristics in thinned Si chip for chip-to-wafer three-dimensional integration [J]. Jpn J Appl Phys, 2013, 52(4S): 04CB11.

    [36] VILOURAS A, HEIDARI H, GUPTA S, et al. Modeling of CMOS devices and circuits on flexible ultrathin chips [J]. IEEE T Electron Dev, 2017, 64(5): 2038-2046.

    [37] TAKAGI S, TORIUMI A, IWASE M, et al. On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration [J]. IEEE T Electron Dev, 1994. 41(12): 2357-2362.

    [38] SHAHRJERDI D, BEDELL S W. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic [J]. Nano lett, 2013, 13(1): 315-320.

    [39] YUAN F, HUANG C F, YU M H, et al. Performance enhancement of ring oscillators and transimpedance amplifiers by package strain [J]. IEEE T Electron Dev, 2006, 53(4): 724-729.

    [40] GRAY P R. Analysis and design of analog integrated circuits [M]. New York: Wiley & Sons, 2009: 253-277.

    [41] HASSAN M U, REMPP H, HOANG T, et al. Anomalous stress effects in ultra-thin silicon chips on foil [C] // IEEE IEDM. Baltimore, MD, USA. 2009: 1-4.

    [42] AHN J H, KIM H S, MENARD E, et al. Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon [J]. Appl Phys Lett, 2007, 90(21): 213501.

    [43] KAO H, CHANG T. Integrated the inductors on ultra‐thin Si substrate to improve the RF performance for low-noise amplifier applications [J]. Microw Opt Techn Let, 2010, 52(7): 1576-1579.

    [44] KIM S, JEONG H Y, KIM S K, et al. Flexible memristive memory array on plastic substrates [J]. Nano Lett, 2011, 11(12): 5438-5442.

    [45] KIM D H, YOO H G, HONG S M, et al. Simultaneous roll transfer and interconnection of flexible silicon NAND flash memory [J]. Adv Mater, 2016, 28(38): 8371-8378.

    [46] LI T T, SAPATNEKAR S S. Stress-induced performance shifts in flexible system-in-foils using ultra-thin chips [C]// 21st ISQED. Clara, CA, USA. 2020: 237-242.

    [47] HOYER C, STEINWEG L, CAO Z B, et al., Bendable 190-GHz transmitter on 20-μm ultra-thin SiGe BiCMOS [J]. IEEE J-FLEX, 2022, 1(2): 122-133.

    [48] HEIDARI H, NAVARAJ W, TOLDI G, et al. Device modelling of bendable MOS transistors [C] // The 2016 IEEE ISCAS. Montreal, QC, Canada. 2016: 1358-1361.

    [49] TORRES SEVILLA G A, ALMUSLEM A S, GUMUS A, et al. High performance high-κ/metal gate complementary metal oxide semiconductor circuit element on flexible silicon [J]. Appl Phys Lett, 2016, 108(9): 094102.

    RHONG Min, CHEN Xian, XU Xueliang, TANG Xinyue, ZHANG Zhengyuan, ZHANG Peijian. esearch Progress on Mechanical and Electrical Properties of Silicon-Based Ultrathin Flexible Chips[J]. Microelectronics, 2023, 53(3): 472
    Download Citation