• Journal of Semiconductors
  • Vol. 46, Issue 2, 021402 (2025)
Xiaohan Meng1,3, Runsheng Gao1,2,*, Xiaojian Zhu1,2,**, and Run-Wei Li1,2
Author Affiliations
  • 1CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • 2Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • 3School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • show less
    DOI: 10.1088/1674-4926/24100025 Cite this Article
    Xiaohan Meng, Runsheng Gao, Xiaojian Zhu, Run-Wei Li. Ion-modulation optoelectronic neuromorphic devices: mechanisms, characteristics, and applications[J]. Journal of Semiconductors, 2025, 46(2): 021402 Copy Citation Text show less
    References

    [1] J von Neumann. First draft of a report on the EDVAC. IEEE Ann Hist Comput, 15, 27(1993).

    [2] T Hasegawa, K Terabe, T Tsuruoka et al. Atomic switch: Atom/ion movement controlled devices for beyond von-neumann computers. Adv Mater, 24, 252(2012).

    [3] M A Zidan, J P Strachan, W D Lu. The future of electronics based on memristive systems. Nat Electron, 1, 22(2018).

    [4] S Salahuddin, K Ni, S Datta. The era of hyper-scaling in electronics. Nat Electron, 1, 442(2018).

    [5] W T Xu, H Cho, Y H Kim et al. Organometal halide perovskite artificial synapses. Adv Mater, 28, 5916(2016).

    [6] B Gholipour, P Bastock, C Craig et al. Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing. Adv Opt Mater, 3, 635(2015).

    [7] T C Südhof. The cell biology of synapse formation. J Cell Biol, 220, e202103052(2021).

    [8] C Mead. Neuromorphic electronic systems. Proc IEEE, 78, 1629(1990).

    [9] P A Merolla, J V Arthur, R Alvarez-Icaza et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 345, 668(2014).

    [10] P G Peng, H Qian, J J Liu et al. Bioinspired ionic control for energy and information flow. Int J Smart Nano Mater, 15, 198(2024).

    [11] H Y Ma, H W Chen, M M Wu et al. Maximization of spatial charge density: An approach to ultrahigh energy density of capacitive charge storage. Angew Chem Int Ed, 59, 14541(2020).

    [12] K Sakhatskyi, R A John, A Guerrero et al. Assessing the drawbacks and benefits of ion migration in lead halide perovskites. ACS Energy Lett, 7, 3401(2022).

    [13] Y S Li, Y Xiong, B X Zhai et al. Ag-doped non-imperfection-enabled uniform memristive neuromorphic device based on van der Waals indium phosphorus sulfide. Sci Adv, 10, eadk9474(2024).

    [14] X J Zhu, D Li, X G Liang et al. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat Mater, 18, 141(2019).

    [15] F Yu, L Q Zhu, H Xiao et al. Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and Pavlovian associative learning activities. Adv Funct Mater, 28, 1804025(2018).

    [16] S Geng, S Q Fan, H F Li et al. An artificial neuromuscular system for bimodal human–machine interaction. Adv Funct Mater, 33, 2302345(2023).

    [17] S H Jo, T Chang, I Ebong et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett, 10, 1297(2010).

    [18] M Prezioso, F Merrikh-Bayat, B D Hoskins et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 521, 61(2015).

    [19] T Ohno, T Hasegawa, T Tsuruoka et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater, 10, 591(2011).

    [20] J M Wu, X Lin, Y C Guo et al. Analog optical computing for artificial intelligence. Engineering, 10, 133(2022).

    [21] Y Wu, J Chen, Y Wang et al. Tbps wide-field parallel optical wireless communications based on a metasurface beam splitter. Nat Commun, 15, 7744(2024).

    [22] T Z Fu, J F Zhang, R Sun et al. Optical neural networks: Progress and challenges. Light Sci Appl, 13, 263(2024).

    [23] T Gotoh, K Tanaka. Photoinduced surface deformations in ion-conducting Ag–As–S glasses. II. Anisotropic deformation produced by large light spots. J Appl Phys, 89, 4703(2001).

    [24] S Pissadakis, A Ikiades, P Hua et al. Photosensitivity of ion-exchanged Er-doped phosphate glass using 248nm excimer laser radiation. Opt Express, 12, 3131(2004).

    [25] Y Kim, J Choi, Y Lee et al. Femtosecond laser bonding of glasses and ion migration in the interface. Appl Phys A, 101, 147(2010).

    [26] N I Mou, M Tabib-Azar. Photoreduction of Ag+ in Ag/Ag2S/Au memristor. Appl Surf Sci, 340, 138(2015).

    [27] W F Han, L A Tellez, M J Rangel et al. Integrated control of predatory hunting by the central nucleus of the amygdala. Cell, 168, 311(2017).

    [28] R H Kramer, A Mourot, H Adesnik. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci, 16, 816(2013).

    [29] D Karl. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci, 18, 1213(2015).

    [30] K M Leng, Z Q Guo, J M Chen et al. PbS/CsPbBr3 heterojunction for broadband neuromorphic vision sensing. ACS Appl Mater Interfaces, 16, 7470(2024).

    [31] R A John, N Yantara, Y F Ng et al. Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation. Adv Mater, 30, 1805454(2018).

    [32] Z G Xiao, J S Huang. Energy-efficient hybrid perovskite memristors and synaptic devices. Adv Electron Mater, 2, 1600100(2016).

    [33] F M Ma, Y B Zhu, Z W Xu et al. Optoelectronic perovskite synapses for neuromorphic computing. Adv Funct Mater, 30, 1908901(2020).

    [34] X Y Yang, Z Y Xiong, Y J Chen et al. A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays. Nano Energy, 78, 105246(2020).

    [35] D W Li, Y T Chen, H H Ren et al. An active-matrix synaptic phototransistor array for In-sensor spectral processing. Adv Sci, 11, 2406401(2024).

    [36] Y Yoon, Y Kim, S Choi et al. Synaptic a-Si: H/a-Ga2O3 phototransistor inspired by the phototaxis behavior of organisms with all-optical and all-electrical stimulation modes. Nano Res, 17, 7631(2024).

    [37] B He, G He, C Fu et al. Electrospun coaxial nanowire-based FETs with annular heterogeneous interface gain for intelligent functional electronics. Adv Funct Mater, 34, 2316375(2024).

    [38] K Liang, R Wang, B B Huo et al. Fully printed optoelectronic synaptic transistors based on quantum dot–metal oxide semiconductor heterojunctions. ACS Nano, 16, 8651(2022).

    [39] S Ham, S Choi, H Cho et al. Photonic organolead halide perovskite artificial synapse capable of accelerated learning at low power inspired by dopamine-facilitated synaptic activity. Adv Funct Mater, 29, 1806646(2019).

    [40] C Lu, J L Meng, J R Song et al. Self-rectifying all-optical modulated optoelectronic multistates memristor crossbar array for neuromorphic computing. Nano Lett, 24, 1667(2024).

    [41] Q H Sun, Z C Guo, X J Zhu et al. Optogenetics-inspired manipulation of synaptic memory using all-optically controlled memristors. Nanoscale, 15, 10050(2023).

    [42] K L Wang, J C Wu, M Wang et al. A biodegradable, stretchable, healable, and self-powered optoelectronic synapse based on ionic gelatins for neuromorphic vision system. Small, 20, 2404566(2024).

    [43] K Chen, H Hu, I Song et al. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat Photonics, 17, 629(2023).

    [44] J N Zhang, X F Feng, L Y Mei et al. A MAPbBr3/PdSe2 Schottky junction-based optoelectronic sensor with self-powered and switchable photocurrents. Mater Des, 234, 112368(2023).

    [45] H S Tian, C Wang, Y W Chen et al. Optically modulated ionic conductivity in a hydrogel for emulating synaptic functions. Sci Adv, 9, eadd6950(2023).

    [46] X Pan, T Y Jin, J Gao et al. Stimuli-enabled artificial synapses for neuromorphic perception: Progress and perspectives. Small, 16, 2001504(2020).

    [47] Z R Wang, S Joshi, S E Savel’ev et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater, 16, 101(2017).

    [48] Y Y Shi, X H Liang, B Yuan et al. Electronic synapses made of layered two-dimensional materials. Nat Electron, 1, 458(2018).

    [49] J D Zhu, Y C Yang, R D Jia et al. Ion gated synaptic transistors based on 2D van der waals crystals with tunable diffusive dynamics. Adv Mater, 30, 1800195(2018).

    [50] Y T Liu, A V Ievlev, N Borodinov et al. Direct observation of photoinduced ion migration in lead halide perovskites. Adv Funct Mater, 31, 2008777(2021).

    [51] D Yadav, S Gora, A Kumar et al. Probing the photo-activated switching dynamics of halide perovskite memristors. ACS Appl Electron Mater, 5, 3765(2023).

    [52] R El Hage, V Humbert, V Rouco et al. Bimodal ionic photomemristor based on a high-temperature oxide superconductor/semiconductor junction. Nat Commun, 14, 3010(2023).

    [53] J Jiang, X Y Shan, J Q Xu et al. Retina-like chlorophyll heterojunction-based optoelectronic memristor with all-optically modulated synaptic plasticity enabling neuromorphic edge detection. Adv Funct Mater, 2409677(2024).

    [54] M Ghasemi, L Zhang, J H Yun et al. Dual-ion-diffusion induced degradation in lead-free Cs2AgBiBr6 double perovskite solar cells. Adv Funct Mater, 30, 2002342(2020).

    [55] D Moia. More ions in, less power out. Nat Energy, 9, 633(2024).

    [56] L McGovern, G Grimaldi, M H Futscher et al. Reduced barrier for ion migration in mixed-halide perovskites. ACS Appl Energy Mater, 4, 13431(2021).

    [57] J Wang, D Wang, Z Y Song et al. Efficient solar energy conversion via bionic sunlight-driven ion transport boosted by synergistic photo-electric/thermal effects. Energy Environ Sci, 16, 3146(2023).

    [58] X J Zhu, W D Lu. Optogenetics-inspired tunable synaptic functions in memristors. ACS Nano, 12, 1242(2018).

    [59] J L Yang, X Y Hu, X Kong et al. Photo-induced ultrafast active ion transport through graphene oxide membranes. Nat Commun, 10, 1171(2019).

    [60] J H Lee, W Schell, X J Zhu et al. Charge transition of oxygen vacancies during resistive switching in oxide-based RRAM. ACS Appl Mater Interfaces, 11, 11579(2019).

    [61] L X Hu, J Yang, J R Wang et al. All-optically controlled memristor for optoelectronic neuromorphic computing. Adv Funct Mater, 31, 2005582(2021).

    [62] X Y Shan, C Y Zhao, X N Wang et al. Plasmonic optoelectronic memristor enabling fully light-modulated synaptic plasticity for neuromorphic vision. Adv Sci, 9, 2104632(2022).

    [63] F C Zhou, Z Zhou, J W Chen et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat Nanotechnol, 14, 776(2019).

    [64] Y X Cao, L Yin, C Zhao et al. Perovskite-based optoelectronic systems for neuromorphic computing. Nano Energy, 120, 109169(2024).

    [65] H W Tan, G Liu, H L Yang et al. Light-gated memristor with integrated logic and memory functions. ACS Nano, 11, 11298(2017).

    [66] J Hao, Y H Kim, S N Habisreutinger et al. Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Sci Adv, 7, eabf1959(2021).

    [67] S S P Swathi, A Makkaramkott, A Subramanian. Tin oxide nanorod array-based photonic memristors with multilevel resistance states driven by optoelectronic stimuli. ACS Appl Mater Interfaces, 15, 15676(2023).

    [68] X Luo, C Chen, Z X He et al. A bionic self-driven retinomorphic eye with ionogel photosynaptic retina. Nat Commun, 15, 3086(2024).

    [69] Y T Li, J Z Li, L Ren et al. Light-controlled reconfigurable optical synapse based on carbon nanotubes/2D perovskite heterostructure for image recognition. ACS Appl Mater Interfaces, 14, 28221(2022).

    [70] H W Tan, G Liu, X J Zhu et al. An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions. Adv Mater, 27, 2797(2015).

    [71] L Q Guo, H X Sun, L L Min et al. Two-terminal perovskite optoelectronic synapse for rapid trained neuromorphic computation with high accuracy. Adv Mater, 36, 2402253(2024).

    [72] M Vasilopoulou, A R bin Mohd Yusoff, Y Chai et al. Neuromorphic computing based on halide perovskites. Nat Electron, 6, 949(2023).

    [73] G E Eperon, S D Stranks, C Menelaou et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 7, 982(2014).

    [74] J Albero, A M Asiri, H García. Influence of the composition of hybrid perovskites on their performance in solar cells. J Mater Chem A, 4, 4353(2016).

    [75] J H Noh, S H Im, J H Heo et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 13, 1764(2013).

    [76] U Das, P Sarkar, B Paul et al. Halide perovskite two-terminal analog memristor capable of photo-activated synaptic weight modulation for neuromorphic computing. Appl Phys Lett, 118, 182103(2021).

    [77] G Woo, D H Lee, Y Heo et al. Energy-band engineering by remote doping of self-assembled monolayers leads to high-performance IGZO/p-Si heterostructure photodetectors. Adv Mater, 34, 2107364(2022).

    [78] H Chalabi, D Schoen, M L Brongersma. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett, 14, 1374(2014).

    [79] D Malavekar, S Pujari, S Jang et al. Recent development on transition metal oxides-based core–shell structures for boosted energy density supercapacitors. Small, 20, 2312179(2024).

    [80] B Sengupta, Q B Dong, R Khadka et al. Carbon-doped metal oxide interfacial nanofilms for ultrafast and precise separation of molecules. Science, 381, 1098(2023).

    [81] C C Yan, W Z Li, Z Y Liu et al. Ionogels: Preparation, properties and applications. Adv Funct Mater, 34, 2314408(2024).

    [82] K Prasad, D Mondal, M Sharma et al. Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents. Carbohydr Polym, 180, 328(2018).

    [83] N W Gao, C F Pan. Intelligent ion gels: Design, performance, and applications. SmartMat, 5, e1215(2024).

    [84] S Gao, G Liu, H L Yang et al. An oxide Schottky junction artificial optoelectronic synapse. ACS Nano, 13, 2634(2019).

    [85] J Lim, M Kober-Czerny, Y H Lin et al. Long-range charge carrier mobility in metal halide perovskite thin-films and single crystals via transient photo-conductivity. Nat Commun, 13, 4201(2022).

    [86] L M Herz. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett, 2, 1539(2017).

    [87] L F Pan, L J Dai, O J Burton et al. High carrier mobility along the [111] orientation in Cu2O photoelectrodes. Nature, 628, 765(2024).

    [88] Y Guo, L Ma, K K Mao et al. Eighteen functional monolayer metal oxides: Wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility. Nanoscale Horiz, 4, 592(2019).

    [89] P Shi, R F Xing, Z F Wu et al. Solid-state optoelectronic synapse transistor using a LaF3 gate dielectric. Phys Status Solidi RRL, 16, 2200173(2022).

    [90] M Lee, W Lee, S Choi et al. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv Mater, 29, 1700951(2017).

    [91] X S Wu, S H Shi, B S Liang et al. Ultralow-power optoelectronic synaptic transistors based on polyzwitterion dielectrics for in-sensor reservoir computing. Sci Adv, 10, eadn4524(2024).

    [92] X Huang, Q Y Li, W Shi et al. Dual-mode learning of ambipolar synaptic phototransistor based on 2D perovskite/organic heterojunction for flexible color recognizable visual system. Small, 17, 2102820(2021).

    [93] S M Kwon, S H Kang, S S Cho et al. Bidirectionally modulated synaptic plasticity with optically tunable ionic electrolyte transistors. ACS Appl Electron Mater, 4, 2629(2022).

    [94] Y Xiao, W B Li, X K Lin et al. 2D MoTe2/MoS2−xOx van der waals heterostructure for bimodal neuromorphic optoelectronic computing. Adv Electron Mater, 9, 2300388(2023).

    [95] J Hu, M J Jing, Y T Huang et al. A photoelectrochemical retinomorphic synapse. Adv Mater, 36, 2405887(2024).

    [96] M Lee, Y Kim, S H Mo et al. Optoelectronic synapse based on 2D electron gas in stoichiometry-controlled oxide heterostructures. Small, 20, 2309851(2024).

    [97] J L Meng, T Y Wang, H Zhu et al. Integrated In-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett, 22, 81(2022).

    [98] R Q Quiroga, L Reddy, G Kreiman et al. Invariant visual representation by single neurons in the human brain. Nature, 435, 1102(2005).

    [99] G Z Wang, R B Wang, W Z Kong et al. Simulation of retinal ganglion cell response using fast independent component analysis. Cogn Neurodyn, 12, 615(2018).

    [100] H Wang, B Sun, S S Ge et al. On non-von Neumann flexible neuromorphic vision sensors. NPJ Flex Electron, 8, 28(2024).

    [101] J H Ding, T J Huang. Towards human-leveled vision systems. Sci China Technol Sci, 67, 2331(2024).

    [102] Y R Wang, Y C Cai, F Wang et al. A three-dimensional neuromorphic photosensor array for nonvolatile In-sensor computing. Nano Lett, 23, 4524(2023).

    [103] M Kumar, H S Kim, J Kim. A highly transparent artificial photonic nociceptor. Adv Mater, 31, 1900021(2019).

    [104] L Kunz, B P Staresina, P C Reinacher et al. Ripple-locked coactivity of stimulus-specific neurons and human associative memory. Nat Neurosci, 27, 587(2024).

    [105] C W Lee, C Yoo, S S Han et al. Centimeter-scale tellurium oxide films for artificial optoelectronic synapses with broadband responsiveness and mechanical flexibility. ACS Nano, 18, 18635(2024).

    [106] D L Jiang, J Li, L K Li et al. Li-ion dual modulation in all-inorganic ZrLiO/InLiO aqueous solution-processed thin-film transistor for optoelectronic artificial synapse. J Phys D: Appl Phys, 54, 405104(2021).

    [107] X Yang, Y C Fang, Z Z Yu et al. Nonassociative learning implementation by a single memristor-based multi-terminal synaptic device. Nanoscale, 8, 18897(2016).

    [108] K Ghaffarzadeh, A Nathan, J Robertson et al. Instability in threshold voltage and subthreshold behavior in Hf–In–Zn–O thin film transistors induced by bias-and light-stress. Appl Phys Lett, 97, 113504(2010).

    [109] H Tan, Z Y Ni, W B Peng et al. Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing. Nano Energy, 52, 422(2018).

    Xiaohan Meng, Runsheng Gao, Xiaojian Zhu, Run-Wei Li. Ion-modulation optoelectronic neuromorphic devices: mechanisms, characteristics, and applications[J]. Journal of Semiconductors, 2025, 46(2): 021402
    Download Citation