• Chinese Optics Letters
  • Vol. 23, Issue 4, 043401 (2025)
Dongxu Qin1, Lian Xue2, Yifan Ding1, Ziwen Huang3..., Lei Yang1, Zhaofeng Kang1, Keyi Wang1,* and Shuai Zhao4,**|Show fewer author(s)
Author Affiliations
  • 1Department of Precision Machinery and Precision Instrument, University of Science and Technology of China, Hefei 230026, China
  • 2Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
  • 3School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
  • 4National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
  • show less
    DOI: 10.3788/COL202523.043401 Cite this Article Set citation alerts
    Dongxu Qin, Lian Xue, Yifan Ding, Ziwen Huang, Lei Yang, Zhaofeng Kang, Keyi Wang, Shuai Zhao, "Optical characterization of X-ray polymer refractive lenses using a microfocus X-ray grating interferometer," Chin. Opt. Lett. 23, 043401 (2025) Copy Citation Text show less
    References

    [1] A. Snigirev, V. Kohn, I. Snigireva et al. A compound refractive lens for focusing high-energy X-rays. Nature, 384, 49(1996).

    [2] M. Lyubomirskiy, C. G. Schroer. Refractive lenses for microscopy and nanoanalysis. Synchrotron Radia. News, 29, 21(2016).

    [3] B. Lengeler, C. Schroer, J. Tümmler et al. Imaging by parabolic refractive lenses in the hard X-ray range. J. Synchrotron. Radiat., 6, 1153(1999).

    [4] C. G. Schroer, M. Kuhlmann, B. Lengeler et al. Beryllium parabolic refractive x-ray lenses. Proc. SPIE, 4783, 10(2002).

    [5] J. Hilhorst, F. Marschall, T. N. ThiTran et al. Full-field X-ray diffraction microscopy using polymeric compound refractive lenses. J. Appl. Crystallogr., 47, 1882(2014).

    [6] M. Engelhardt, J. Baumann, M. Schuster et al. Inspection of refractive x-ray lenses using high-resolution differential phase contrast imaging with a microfocus x-ray source. Rev. Sci. Instrum., 78, 093707(2007).

    [7] A. S. Narikovich, P. A. Ershov, V. N. Leitsin et al. X-ray tomography as a diagnostic method of X-ray refractive optics. Instrum. Exp. Tech., 60, 390(2017).

    [8] V. Nazmov, E. Reznikova, J. Mohr et al. Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers. Microsyst. Technol., 10, 716(2004).

    [9] M. Polikarpov, V. Polikarpov, I. Snigireva et al. Diamond X-ray refractive lenses with high acceptance. Phys. Procedia, 84, 213(2016).

    [10] M. Malinauskas, M. Farsari, A. Piskarskas et al. Ultrafast laser nanostructuring of photopolymers: a decade of advances. Phys. Rep., 533, 1(2013).

    [11] A. K. Petrov, V. O. Bessonov, K. A. Abrashitova et al. Polymer X-ray refractive nano-lenses fabricated by additive technology. Opt. Express, 25, 14173(2017).

    [12] T. dos Santos Rolo, S. Reich, D. Karpov et al. A Shack-Hartmann sensor for single-shot multi-contrast imaging with hard X-rays. Appl. Sci., 8, 737(2018).

    [13] A. Barannikov, M. Polikarpov, P. Ershov et al. Optical performance and radiation stability of polymer X-ray refractive nano-lenses. J. Synchrotron Radiat., 26, 714(2019).

    [14] M. Lyubomirskiy, F. Koch, K. A. Abrashitova et al. Ptychographic characterization of polymer compound refractive lenses manufactured by additive technology. Opt. Express, 27, 8639(2019).

    [15] S. Juodkazis, V. Mizeikis, H. Misawa. Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications. J. Appl. Phys., 106, 8(2009).

    [16] M. Farsari, B. N. Chichkov. Two-photon fabrication. Nat. Photonics, 3, 450(2009).

    [17] C. N. LaFratta, J. T. Fourkas, T. Baldacchini et al. Multiphoton fabrication. Angew. Chem. Int. Ed. Engl., 46, 6238(2007).

    [18] M. I. Sharipova, T. G. Baluyan, K. A. Abrashitova et al. Effect of pyrolysis on microstructures made of various photoresists by two-photon polymerization: Comparative study. Opt. Mater. Express., 11, 371(2021).

    [19] L. Pertoldi, V. Zega, C. Comi et al. Dynamic mechanical characterization of two-photon-polymerized SZ2080 photoresist. J. Appl. Phys., 128, 175102(2020).

    [20] M. Engelhardt, J. Baumann, M. Schuster et al. High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source. Appl. Phys. Lett., 90, 224101(2007).

    [21] T. Weitkamp, A. Diaz, C. David et al. X-ray phase imaging with a grating interferometer. Opt. Express, 13, 6296(2005).

    [22] J. Yuan, C. Wu, Y. Li et al. Integer and fractional electromagnetically induced Talbot effects in a ladder-type coherent atomic system. Opt. Express, 27, 92(2019).

    [23] A. Momose, S. Kawamoto, I. Koyama et al. Demonstration of X-ray Talbot interferometry. Jpn. J. Appl. Phys., 42, L866(2003).

    [24] B. L. Henke, E. M. Gullikson, J. C. Davis. X-Ray interactions: photo absorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data. Nucl. Data. Tables., 54, 181(1993).

    [25] S. Rutishauser, I. Zanette, T. Weitkamp et al. At-wavelength characterization of refractive x-ray lenses using a two-dimensional grating interferometer. Appl. Phys. Lett., 99, 221104(2011).

    [26] I. Zanette, T. Zhou, A. Burvall et al. Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source. Phys. Rev. Lett., 112, 253903(2014).

    [27] S. Bérujon, E. Ziegler, R. Cerbino et al. Two-dimensional x-ray beam phase sensing. Phys. Rev. Lett., 108, 158102(2012).

    [28] H. Wang, S. Berujon, J. Herzen et al. X-ray phase contrast tomography by tracking near field speckle. Sci. Rep., 5, 8762(2015).

    [29] R. Vander, S. G. Lipson, I. Leizerson. Fourier fringe analysis with improved spatial resolution. Appl. Opt., 42, 6830(2003).

    Dongxu Qin, Lian Xue, Yifan Ding, Ziwen Huang, Lei Yang, Zhaofeng Kang, Keyi Wang, Shuai Zhao, "Optical characterization of X-ray polymer refractive lenses using a microfocus X-ray grating interferometer," Chin. Opt. Lett. 23, 043401 (2025)
    Download Citation