• Acta Optica Sinica
  • Vol. 43, Issue 7, 0706004 (2023)
Yong Chen1、*, Zhiqian Wu1, Huanlin Liu2, Chenyi Hu1, Jinlan Wu1, and Chuangshi Wang1
Author Affiliations
  • 1Key Laboratory of Industrial Internet of Things & Network Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • 2School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • show less
    DOI: 10.3788/AOS221812 Cite this Article Set citation alerts
    Yong Chen, Zhiqian Wu, Huanlin Liu, Chenyi Hu, Jinlan Wu, Chuangshi Wang. Neural-Network-Based Channel Estimation Method for Visible Light Communication Systems[J]. Acta Optica Sinica, 2023, 43(7): 0706004 Copy Citation Text show less
    References

    [1] Khan L U. Visible light communication: applications, architecture, standardization and research challenges[J]. Digital Communications and Networks, 3, 78-88(2017).

    [2] Jia K J, Hao L, Yu C H. Modeling of multipath channel and performance analysis of MIMO-ACO-OFDM system for indoor visible light communications[J]. Acta Optica Sinica, 36, 0706005(2016).

    [3] Zhang J, Wang H. An improved SNR uniformity optimization scheme for VLC system[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 27, 78-82(2015).

    [4] Jia K J, Wei S B, Lin Y et al. Research on precoding optical orthogonal frequency division multiplexing system in visible light communication[J]. Acta Optica Sinica, 41, 1706004(2021).

    [5] Vappangi S, Vakamulla V M. Channel estimation in ACO-OFDM employing different transforms for VLC[J]. AEU-International Journal of Electronics and Communications, 84, 111-122(2018).

    [6] Zhang C, Du H Q, Wu Z J. Sparsity-based channel estimation in visible light communication[C], 126-130(2018).

    [7] Lu C Y, Wu S, Jiang C X et al. Weak harmonic signal detection method in chaotic interference based on extended Kalman filter[J]. Digital Communications and Networks, 5, 51-55(2019).

    [8] Manur V B, Ali L. Compressed sensing channel estimation for STBC-SM based hybrid MIMO-OFDM system for visible light communication[J]. International Journal of Communication Systems, 33, e4403(2020).

    [9] Mu Z, Liu Y Y, Wang Y et al. Anonymous crowdsourcing-based WLAN indoor localization[J]. Digital Communications and Networks, 5, 226-236(2019).

    [10] Chen Y, Yin H, Liu H L. Adaptive channel estimation for MIMO-OFDM visible light communication system[J]. Chinese Journal of Lasers, 43, 0906003(2016).

    [11] Miao P, Chen G J, Wang X B et al. Adaptive nonlinear equalization combining sparse Bayesian learning and Kalman filtering for visible light communications[J]. Journal of Lightwave Technology, 38, 6732-6745(2020).

    [12] Jiao J Y, Sun X H, Fang L et al. An overview of wireless communication technology using deep learning[J]. China Communications, 18, 1-36(2021).

    [13] Gao Y L, Wu Z Y, Wang J. Convolution neural network-based time-domain equalizer for DFT-Spread OFDM VLC system[J]. Optics Communications, 435, 35-40(2019).

    [14] Zhao Y H, Zou P, Yu W X et al. Two tributaries heterogeneous neural network based channel emulator for underwater visible light communication systems[J]. Optics Express, 27, 22532-22541(2019).

    [15] Gao Z P, Wang Y H, Liu X D et al. FFDNet-based channel estimation for massive MIMO visible light communication systems[J]. IEEE Wireless Communications Letters, 9, 340-343(2020).

    [16] Lu X Y, Lu C, Yu W X et al. Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system[J]. Optics Express, 27, 7822-7833(2019).

    [17] Cao B Y, Yuan K C, Li H et al. The performance improvement of VLC-OFDM system based on reservoir computing[J]. Photonics, 9, 185(2022).

    [18] Salama W M, Aly M H, Amer E S. Enhanced deep learning based channel estimation for indoor VLC systems[J]. Optical and Quantum Electronics, 54, 535(2022).

    [19] Costa W S, Samatelo J L A, Rocha H R O et al. CNN direct equalization in OFDM-VLC systems: evaluations in a numerical model based on experimental characterizations[J]. Photonic Network Communications, 1-11(2022).

    [20] Mei K, Liu J, Zhang X Y et al. A low complexity learning-based channel estimation for OFDM systems with online training[J]. IEEE Transactions on Communications, 69, 6722-6733(2021).

    [21] Sun Y, Shen H, Du Z G et al. ICINet: ICI-aware neural network based channel estimation for rapidly time-varying OFDM systems[J]. IEEE Communications Letters, 25, 2973-2977(2021).

    [22] Mashhadi M B, Gündüz D. Pruning the pilots: deep learning-based pilot design and channel estimation for MIMO-OFDM systems[J]. IEEE Transactions on Wireless Communications, 20, 6315-6328(2021).

    [23] Shi J, Huang A P, Tao L W. Deep learning aided channel estimation and signal detection for underwater optical communication[J]. Chinese Journal of Lasers, 49, 1706004(2022).

    [24] Wang K Y, Hong Z Y, Zeng Z Q. Symbol timing offset estimation method for visible light communication systems[J]. Acta Optica Sinica, 42, 0706007(2022).

    [25] Klambauer G, Unterthiner T, Mayr A et al. Self-normalizing neural networks[C], 972-981(2017).

    [26] Yong H W, Huang J Q, Hua X S et al. Gradient centralization: a new optimization technique for deep neural networks[M]. Vedaldi A, Bischof H, Brox T, et al. Computer vision-ECCV 2020. Lecture notes in computer science, 12346, 635-652(2020).

    [27] Ye H, Li G Y, Juang B H. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 7, 114-117(2018).

    [28] Gao X X, Jin S, Wen C K et al. ComNet: combination of deep learning and expert knowledge in OFDM receivers[J]. IEEE Communications Letters, 22, 2627-2630(2018).

    Yong Chen, Zhiqian Wu, Huanlin Liu, Chenyi Hu, Jinlan Wu, Chuangshi Wang. Neural-Network-Based Channel Estimation Method for Visible Light Communication Systems[J]. Acta Optica Sinica, 2023, 43(7): 0706004
    Download Citation